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ON THE L2-INDEX OF DIRAC OPERATORS
ON MANIFOLDS WITH CORNERS
OF CODIMENSION TWO. I

WERNER MULLER

0. Introduction

The purpose of this paper is to generalize the Atiyah-Patodi-Singer
index theorem (or APS theorem for briefness) [1] to compact manifolds
with corners of codimension two. To explain this in more detail, we first
recall the results of [1].

Let X be an even—dimensional compact oriented manifold with smooth
boundary M and assume that X is endowed with a metric which is a
product near the boundary. Let £ — X be a Clifford bundle over X.
We also assume that the metric and the connection of FE are products
near the boundary. Let Dt : C°(X,Et) — C*(X, E~) be the asso-
ciated chiral Dirac operator. Then near the boundary, D" takes the
form

(0.1) Dt :7(%+A),

where 7 denotes Clifford multiplication by the inward unit normal vector
field, u is the inward unit normal coordinate and A is a Dirac operator
on M. Let P be the nonnegative spectral projection of A and denote
by C*(X,E™";P) the space of smooth sections of E1 satisfying the
boundary conditions

(0.2) P(plps) = 0.
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Then Dt : C*(X,Et; P) - C®(X,E~) is a Fredholm operator and
its index is given by

(0.3) Ind D :/ wp — —;—(n(A) + dimker A),
b'e
where wp, is the Atiyah-Singer index density of D", and n(A) is the eta
invariant of the self-adjoint operator A. Recall that the eta invariant is
defined by the eta function
(0.4) na(s) = Z w, Re(s) > dim M,
fer il ol
where A runs over the nonzero eigenvalues of A. The series is absolutely
convergent in the half-plane Re(s) > dimM and has a meromorphic
continuation to C with no pole at s = 0. Then the eta invariant 7(A)
is defined as 7.4(0).

In the sequel, the APS theorem has been rederived by many differ-
ent approaches. First, Cheeger [5], [6] gave a new proof of the APS
theorem for the signature operator using analysis on spaces with con-
ical singularities. If one attaches a cone C(M) to the boundary M of
X, then X U C(M) becomes a space with a conical singularity. The
boundary conditions (0.2) are now replaced by the L?—conditions in the
complement of the cone tip and the computation of the L*~index of the
signature operator reproduces (0.3) in this case. In fact, as emphasized
by Cheeger [5], this should not be considered as a rederivation of the
APS theorem, but rather as the natural signature formula for a class
of singular spaces. This approach was extended in [2] to twisted Dirac
operators.

In place of a cone one can also attach a half-cylinder to the bound-
ary of X, endow Rt x M with certain warped product metrics, and
rederive the APS theorem as L?-index theorem for the corresponding
Dirac operator on the enlarged manifold [18], [15], [22]. In particular,
we may consider the manifold X = X Uy, (R* x M) where the cylinder is
equipped with the product metric. Then X is a complete manifold, and
it was already observed in [1] that the index of the APS boundary value
problem and the L?~index of the canonically extended Dirac operator
on X are closely related. After changing coordinates, we may think of
X as being the interior of a compact manifold with boundary, endowed
with a complete metric which sends the boundary to infinity. This is
the point of view adopted by Melrose in [15].

In the present paper we study similar index problems on manifolds
with corners of codimension two. Here, we follow [15] and define a
manifold with corners to be a topological manifold X with boundary
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together with an embedding ¢ : X «» X into a closed C® manifold for
which there exists a finite collection of functions p; € C*(X), ¢ € I,
such that «(X) = {z € X | ps(z) > 0,4 € I} and for each subset
J C I, the dp;, ¢ € J, are linearly independent at each point z € X
where all p;, 7+ € J, vanish. It follows from this definition that the
boundary of X is the union of embedded hypersurfaces Y;, ¢ € I. Let
Yo =Y, N---NY,,, ¢; € I. Then we say that Y;,..;, is a corner of
codimension k. We assume that X is endowed with a metric which is
a product near all hypersurfaces and also near all corners. This means
that for any corner Y;,...;, of codimension k, the metric is a product on a
neighborhood of the form (—¢,0]F x Y;,..;,. Let Dt be a Dirac operator
on X, which is adopted to the product structure near the boundary.
Then the goal is to generalize the APS theorem to this case. There
are several reasons to expect that such an extension will be of inter-
est. For example, by investigating index problems on manifolds with
smooth boundary one is led very naturally to new spectral invariants
on odd-dimensional manifolds, namely the eta invariants. Therefore,
the presence of corners may lead to other new invariants attached to
the corners. Furthermore, an index formula is also closely related with
a gluing formula for eta invariants (see §8).

We do not know if there exists any generalization of the APS bound-
ary conditions to the case of manifolds with corners. However, as ex-
plained above, the APS boundary conditions can be replaced by the
L?-conditions on the corresponding manifold with cylindrical ends. This
is the approach we are going to use for a manifold with corners X,. To
get a complete manifold, we may either enlarge X, by gluing succes-
sively cylinders to boundary components or, we may endow X, with a
complete metric of the type used by Melrose [15]. One may even think
of more general geometric structures at infinity so that, for example,
locally symmetric manifolds of finite volume are included naturally into
the setting.

Working in the L?-setting introduces new difficulties which are con-
nected with the presence of the continuous spectrum. But this should
not be considered as being necessarily a disadvantage, because the
L*-approach also opens up new perspectives of the whole subject. We
have to study the spectral theory of Dirac operators on such manifolds.
In particular, we have to investigate the structure of the continuous
spectrum of these operators and to establish the link with scattering
theory. There is a close relation of these problems with both the analy-
sis of the N-body problem in quantum mechanics and the study of the
spectral resolution of the Casimir operator on locally symmetric man-
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ifolds of finite volume [13]. This may be a lot more interesting than
simply the derivation of an index formula.

In the present paper we consider only manifolds with corners of codi-
mension < 2. The reason for this assumption is obvious because, in
order to treat the continuous spectrum of Dirac operators on the cor-
responding complete manifolds, we need to know as much as possible
about the spectral resolution of the induced Dirac operators on the
boundary hypersurfaces. In the codimension-two case, the boundary
hypersurfaces are manifolds with cylindrical ends for which the spectral
theory is well understood.

For simplicity, we assume that the boundary of our manifold with
corners X, is the union of exactly two hypersurfaces M; and M,, in-
tersecting in a closed manifold Y which is the corner in this case (see
Fig.1). The extension of our results to several corners of codimension
two is straightforward. We enlarge X, by gluing first half-cylinders to
the boundary components M; and then filling in (R*)? x Y (see Fig.2).
In this way, we construct a complete manifold X which is canonically
associated with Xp. Let Z; = M; Uy (Rt x Y), ¢ = 1,2, be the man-
ifolds obtained from M; by attaching half-cylinders to their boundary
Y. Then Z; are manifolds with cylindrical ends which may be regarded
as the components of the ideal boundary of X. Note that X is the union
of Rt x Z;, R* x Z, and X,.

In §2 we study Dirac operators D : C*(X,E) —» C>*(X,FE) on X.
We assume that D is adopted to the product structure of X near infinity,
that is, we assume that on Rt x Z;, D takes the form

(0.5) D= (58— + Ai)a

Usq

and on (R*)? x Y, it can be written as

0 0
D=y

i — 4+ D ,
3u1 +726U2 Y

where conditions (2.1) — (2.4) are satisfied. One of our main results in
this section is that the space of L? solutions of D is finite-~dimensional.
Hence, if X 1is even—dimensional, the chiral Dirac operator
D+ . C®(X,E*) = C®(X, E~) has a well-defined L? index

L*-Tnd D* = dim(ker(D*) N L?) — dim(ker(D~) N L?).

In §3 we study the space 1, (X) of L? harmonic forms on X. The
main result is Proposition 3.13 which states that the canonical map
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H{p(X) — H*(X) induces an isomorphism
(0.6) g :HZ2)(X)—l>Im(H:(X) - H*(X)),

where H}(X) denotes the de Rham cohomology with compact supports.
Suppose that dim X, = 4k and let Sign(X,) be the signature of the
compact manifold with boundary X,. As a consequence of (0.6) we get
that the L? index of the signature operator on X equals Sign(Xy), which
should be expected to hold for the right choice of boundary conditions.

Let A = D?%. In §4, we study the heat equation for A and construct
a parametrix for the fundamental solution of /0t + A.

For the derivation of the index formula we need to describe the contin-
uous spectrum of A near zero. In §5 we study the resolvent (A — A?)~2,
Im(A) > 0. If the Dirac operator Dy on the corner is invertible, then
we prove that (A — A\2)7!, regarded as operator in certain weighted L?
spaces, has an analytic continuation to a neighborhood of 0. We be-
lieve that the condition ker Dy = 0 can be removed. Then, however,
(A — X?)~! does not extend analytically to a small disc around X = 0,
but rather to the logarithmic covering of such a disc. The investigation
of the analytic continuation of the resolvent in general requires a more
thorough study of the continuous spectrum, which we postpone to a
forthcoming paper.

Let A; : C*(Z;, EIZi) — C>(Z,, E|Zi) be the Dirac operator defined
by (0.5) and let A; be its unique self-adjoint extension in L?. Using the
analytic continuation of the resolvent to a neighborhood of the origin,
we construct in §6 generalized eigensections E;(¢, ), Im(A) > 0, of
A which are attached to ¢ € ker4;, i = 1,2. If ker Dy = 0, then
the generalized eigensections E;(¢, \) can be extended to meromorphic
functions of A for |A| < c¢. We establish a number of properties, including
the functional equations, satisfied by the generalized eigensections. The
continuous spectrum of A near zero can be completely described in
terms of the generalized eigensections E;(¢, A), ¢ € ker A;, i = 1,2.

Then in §7, we prove our index formula. Our approach is based on
the local version of the McKean—Singer formula. Let dim X = 2k and
let 7: E — F be the canonical involution of the Clifford bundle. Then
we have 7D = —D7. Let e~*P*(z,y) be the kernel of the heat operator
e~*P*. Then the local McKean-Singer formula states that

(0.7) % tr(r etb’? (z,z)) = div Vp,

where Vp, is the vector field on X which is given locally, with respect to
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an orthonormal moving frame {e;}? |, by

Vp = ;% tr(e; - rDe P’ (m,m)) e;.
For a closed manifold, (0.7) implies the usual statement that the su-
pertrace Tr(re~*P*) is independent of ¢ and equals Ind D*. Since our
manifold is noncompact, we exhaust it by compact submanifolds Xr,
T > 0, with piecewise smooth boundary. For T' > 0, let Z,r =
M; Uy ([0,T] x Y). Then the boundary of X7 is the union of Z r
and Z, 7, which intersect in {7} x Y ~ Y. Using (0.7) together with
the local index theorem for Dirac operators [10], we get

L*-Ind D*

(0.8) 1 oo ,
=/ wp + lim = / / tr (e, - 7De™ P (z,z)) dz dt,
X 2 Jo Joxr

where wp is the Atiyah-Singer index density of Dt and e, is the outward
unit normal vector field to the boundary. To compute the limit on the

right-hand side of (0.8), we split the ¢-integral as foﬁ—l— [ and study
the corresponding double integrals separately. The limit of the first
double integral, where t runs from 0 to v/T, can be described in terms
of eta invariants. Since 7D = —Dr, it follows from (0.5) that the
involution 7 commutes with A;, j = 1,2. Let A} be the restriction of
A;j to L*(Z;, E*| 7 ). Then the eta invariant n(A}) of A} is defined by

1 o0 2
09 AN =7 /0 172 /Z tr(AF e A (5, ) dy

where e~14)” (z,y) denotes the kernel of e~%47)* . The absolute conver-

gence of (0.9) is proved in [16]. From the results of [16], it follows that
as T' — oo, the first double integral converges to 1/2(n(Af) + n(Af)).

Let R(T) be the remaining double integral, where ¢ runs from /T to
00. The behaviour as T' — oo, of R(T') is determined by the continuous
spectrum of A near zero. If the continuous spectrum has a positive
lower bound, then R(T) decays exponentially as T' — oco. Our analysis
of the continuous spectrum shows that this case occurs if and only if
ker Dy = 0 and ker A; =0, j = 1,2. We assume only that ker Dy = 0,
which may be regarded as intermediate case. Then the generalized
eigensections E;(¢, A), ¢ € ker A;, determine scattering matrices C;(\) :
ker A; — ker A; which are meromorphic functions on a disc |A| < ¢ and
satisfy the functional equations C;(A)C;(—X) =Id, |A| < ¢, i=1,2. In
particular, C;(\) is regular at A = 0 and C;(0)*> =Id. The canonical
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involution 7 of £ induces an involution of ker A;, which we also denote
by 7. The scattering matrix C;(A\) commutes with 7. Let C; () be the
restriction of C;(\) to the +1-eigenspace of 7. Then it follows that as
T — oo, R(T) converges to —1/2Tr(C5 (0)) — 1/2Tr(C5 (0)), and our
final index formula can now be stated as follows:

Theorem 0.1. Let X, be an even—dimensional Riemannian manifold
with a corner of codimension two such that the boundary of Xy is the
union of two components My and M,, intersecting in a closed manifold
Y. Let X be the associated complete manifold constructed above with
ideal boundary components Z; = M; Uy (R* xY), i=1,2. Let

Dt : C®(X,E*) = C®(X,E")

be a chiral Dirac operator on X and assume that on R* x Z;, D% takes
the form

0
D+ = Y
where v; denotes Clifford multiplication by the inward unit normal vector
field and A is a Dirac operator on Z;. Suppose that the corresponding
Dirac operator Dy on the corner Y is invertible. Then we have

+ 4F), i=12,

I’-Ind D* =/pr — %{n(Ai) + Tr(C7(0)) }
(010 — S{n(45) + THCHO),

where n(A}) is the eta invariant, defined by (0.9), of the unigue self-
adjoint extension A7 of A} in L2, and C;j()\) : ker A7 — ker A},
[A| < ¢, is the scattering matriz associated with A} .

This index formula can be rewritten such that the right-hand side
involves only terms which are defined on X,. First observe that near
the boundary of M;, A} takes the form

0
Aj_ =0Jj (—aE‘ -+ Bj),
where B, is some Dirac operator on Y and o; denotes Clifford multipli-
cation by the outward unit normal vector field. Let P; be the negative
spectral projection for B;. Using P;, we impose APS boundary con-
ditions for A} at OM; = Y. Since kerDy = kerB; = 0, we get a
self-adjoint extension (A])p,. In [16] we proved that (A])p; has pure
point spectrum and the eta invariant n(A}, P;) of (A])p, can be de-
fined by analytic continuation of a series which is analogous to (0.4).
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Moreover, by Theorem 0.1 of [16], we have
U(Aj) = U(A;"_7F)J')a J=12

Let hf be the dimension of the subspace of ker A;b consisting of all
limiting values of extended L? solutions of D* (see the end of §7 for the
definition). Then we have

Tr(C;}(0)) =h} — h; and dimker A} =h} + h;.

In general, the L? index is not stable under compactly supported per-
turbations. However, as the index formula shows, L?-Ind D¥ — h] — hg
is stable under perturbations supported on a compact subset of X. This
suggests to define

(0.11) Ind D* = L%-Ind D* — h{ — h;.

If the boundary of X is smooth, it is proved in Corollary 3.13 of [1] that
(0.10) equals the index of the APS boundary value problem. This index
can also be interpreted as Fredholm index in weighted Sobolev spaces
[15]. Therefore we think that Ind D*, as defined above, has a similar
interpretation which justifies the notation. Now we can reformulate
Theorem 0.1 as follows:

Theorem 0.2. Let the assumptions be the same as in Theorem 0.1.
Suppose that near the boundary of M;, A} has the form

é] .
A;F=0i(5;+3i)a 1=1,2,
where B; is a Dirac operator on'Y and o; denotes Clifford multiplication

by the outward unit normal vector field. Let P; be the negative spectral
projection with respect to B;. Then we have

__ 1
ind D+ :/X wp = {n(AF, B) + dimker(4})r }
V]
1 .
_ 5{,,(Ag,Pz) + dimker(A})p, },

where Ind D+ is defined by (0.11), wp is the Atiyah—Singer index density
for Dt and n(Af,Pj) is the eta invariant of the self-adjoint extension
(Af)p; of A;IMJ- with respect to the APS boundary conditions defined
by Pj.

The elimination of the condition ker Dy = 0 requires a better under-
standing of the continuous spectrum of A. There will be no significant
change of the index formula. Again, the contribution of the continuous
spectrum in the index formula will be given as combination of traces of
scattering matrices at energy zero. This will be discussed elsewhere.
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In §8 we use the index theorem to derive a splitting formula for eta
invariants. A number of authors [4], [8], [14], [25] have proved splitting
formulas mod Z. We identify explicitly the integer part as combination
of indices of certain Dirac operators. _

Finally, in §9 we discuss as an example the case where X is the
product of two even—dimensional manifolds with cylindrical ends, say
X; and X,. We also assume that the Clifford bundle is the exterior
tensor product of Clifford bundles over X;. Then the L? index of the
corresponding Dirac operator D+ is the product of the L? indices of the
Dirac operators D;" on X;. Using the index formula for Dirac operators
on manifolds with cylindrical ends, we get a formula for L?>-Ind(D).
We compare this formula with the answer given by Theorem 0.1. The
boundary term in this index formula displays a natural decomposition
where each term is associated with a particular stratum of the boundary
at infinity. In the present case, the corner Y is the product of two odd—
dimensional closed Riemannian manifolds. The term which seems to
be naturally attached to the corner is the product of the eta—invariants
of the induced Dirac operators on Y;. At the end we briefly discuss a
possible approach to obtain such a decomposition in general.

1. Manifolds with corners of codimension two

To simplify notation, we shall only consider the simplest case of a sin-
gle corner of codimension two. The extension of our results to manifolds
with several corners of codimension two is straightforward.

Let M be a closed oriented (n— 1)-dimensional C* Riemannian man-
ifold and let Y C M be a closed oriented submanifold of codimension
1, which separates M in two submanifolds, say M; and M,. We also
assume that, near Y, M is isometric to the product (—¢,e) x Y, € > 0.
Let X, be a compact oriented n—dimensional Riemannian manifold with
boundary M. We assume that the metric on Xj has the following prop-
erties:

(1) In a neighborhood (—¢,0] x M; of the boundary component M;,
1 =1,2, Xy is isometric to the product metric on (—¢,0] x M.

(2) Inaneighborhood of the corner Y, X, is isometric to (—¢, 0]>xY,
equipped with the product metric.

We shall call X, a manifold with a corner at Y. More generally, we
may consider a compact oriented Riemannian manifold X which has &k
boundary components Y;, and near each boundary component Y;, the
metric has a product structure as described above.

Example 1. Let M;, i = 1,2, be two compact oriented Rieman-
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FI1GURE 2. The complete manifold X.

nian manifolds with C* boundary B;. Suppose that in a neighborhood
(—&,0] x B; of the boundary B;, the metric of M; is isometric to the
product metric on this neighborhood. Then Xy = M; X M, is a manifold
with a corner at Y = B; x Bs.

We associate with Xy a noncompact complete Riemannian manifold
X as follows. Let

(1.1) Z.,' = M.,' Uy (R+ X Y), 1= 1,2,

where the bottom {0} XY of the half-cylinder is identified with OM; =Y.
Then Z; is a manifold with a cylindrical end. Furthermore, let

(12) W1 = X(] UM2 (R+ X Mz), W2 = X(; U}l,{1 (]R+ X Ml)
Observe that W, is an n—dimensional manifold with boundary Z;. Set
(13) X = W1 Uz‘ (R+ X Zl) = Wz UZ2 (R+ X Z‘Z)3

where {0} x Z; is identified with the boundary Z; of W, ¢ = 1,2. We
equip R" x M; and R* x Z;, i = 1, 2, with the product metric and extend
in this way the metric on X, to a complete C> Riemannian metric on
X. We call X a complete manifold with a corner at Y. If we unravel
(1.1) and (1.2), we get a further decomposition of X as

(1.4) X =X, U(RY x My) U(RT x M) U ((RY)? x Y),

where the boundaries are identified correspondingly. See Fig.2 for an
illustration.
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[0,T]xM; [0,T]2 <Y

[0,T] xM>

FI1GURE 3. The extended manifold X.

Example 2. Let Z; and Z, be two Riemannian manifolds with cylin-
drical ends, that is, Z; = M; U (Rt x B;) where M; is a compact Rie-
mannian manifold with boundary B;. Then X = Z; x Z, is a complete
manifold with a corner at B; x B,.

There exists a distinguished exhaustion of X by compact submani-
folds X7, T > 0, which we shall now describe. Let T > 0 be given and
set

(1.5) Zir = M; Uy ([0,T) x Y), i=1,2.

Here it is understood that {0} x Y is identified with OM;. Then Z; 7,
T > 0, is a family of compact manifolds with boundary which exhaust
Z;. Next we attach the finite cylinder [0, 7] x M; to X, by identifying
M, C 8X, and {0} x M; in the obvious way. The resulting manifold
War = Xo U M;([0,T] x M) is a manifold with a corner. Note that
the boundary of W, is the union of M; and Z,r. Now we glue the
finite cylinder [0,T] x Z5 7 to W7 where {0} X Z, 1 is identified with
the corresponding piece Z; r of the boundary of W, r. The resulting
manifold is called X7, that is,

(16) XT = Wz,T UZz,T ([O,T] X ZQ,T), T > 0.

The manifold X7 is again a manifold with a corner at Y. Moreover, the
boundary is given by

(1.7) 0Xr = Zi,r Uy (—Za7)-
We may also construct Xr by a different gluing process, namely

(1.8) X =XoU([0,T] x My) U ([0,T] x M) U ([0, T]* x ),

where the boundaries are identified correspondingly (see Fig. 3).
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2. Dirac operators on complete manifolds with corners

Let X be as above and let £ — X be a Clifford bundle over X
(cf. [11]). Let D : C*(X,F) — C*(X, E) be the (generalized) Dirac
operator associated with E. We assume that the Hermitian metric and
the connection V¥ of the Clifford bundle E are compatible with the
product structure of X. Let RF be the curvature tensor of E. Then
|(VE)kRE (z)| is uniformly bounded on X for all kK € N. Furthermore,
D has the following properties:

(i) There exist Clifford bundles E; over Z; such that E|p+ Z is

the pull-back of E;, and on R* x Z; we have
a

(2.1) D:yi(BEJrAi), i=1,2,

where A; is the Dirac operator of E;, and <y; denotes Clifford
multiplication by the outward unit normal vector field. The ~;
satisfy the following relation

(2.2) v =-1Id, 4 =-v and YA =-Am, 1=12

(ii) There exists a Clifford bundle S over Y such that E|(]R+)2 <Y
is the pull-back of S, and on (R*)? x Y we have

0 0
2. D =~— — + D
(2.3) ’Ylaul + 72(911,2 + LDy,
where Dy is the Dirac operator of S, and 7,7, are Clifford
multiplications by the outward unit normal vector fields. In
addition to (2.2), the following relations hold

(2.4) Yyz: + 7271 =0, %Dy =-Dyvy;, i=1,2.

We shall now describe some of the basic properties of D. Since X is
a complete Riemannian manifold, from Theorem 1.17 of [11] it follows
that D : C*(E) — L?(F) is essentially self-adjoint. For ¢ € C®(E),
set

(2.5) e lE= 31 Ve I

and denote by H*(FE) the completion of C®(E) in this norm. The
Sobolev space H*(E) coincides with the space of all ¢ € L%(E) such
that the distributional image V'y is also in L?(E) for all | < k. The
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connection V gives rise to an elliptic second order differential oper-
ator V*V : C*(E) — C>(E). Recall that the following Bochner-
Weitzenbock formula holds:

(2.6) D?*=V"V + RF,

where R” is defined by the curvature tensor of E. More precisely, if
€1, .., €n 18 an orthonormal basis of T, X, then

z:el e] ee,

1]1

and R?  is the curvature transformation of E. Due to our assumption
on FE, the curvature tensor is uniformly bounded on X. Therefore, by
(2.6) there exist constants C;, Cy > 0 such that

Cillgli<hiol* +l Do l’<Call oI

for all ¢ € H'(E). This implies that an equivalent norm in H!(E) is
given by

e =t ¢ 1I* + I D |I* .
A similar result holds for all H*(E).

Proposition 2.7. For each k € N, there ezist Cy(k),Co(k) > 0 such
that

k)l 12 < Z | D! |2 < Ca(k) || ¢ |12

for all $ € H*(E).

To prove Proposition 2.7 one uses that the injectivity radius of X has
a positive lower bound, and all covariant derivatives of the curvature
tensor of E are uniformly bounded in absolute value. Then the claimed
inequalities follow, as on a compact manifold, from the elliptic estimate
for D.

In other words, an equivalent norm in H*(E) is given by

k
e lliz=>_ 11 D'p|*.
=0

For the same reason, it also follows that the Sobolev embedding theorem
holds for X [9, Corollary 1.14]. Namely, we have

Proposition 2.8. For [ > n/2 + k, there exists a continuous em-
bedding H(X,E) — C*(X,E), i.e., there exists C;), > 0 such that
Il @ llex< Cu | @ llme for all ¢ € H'(X, E).

Let D denote the unique self-adjoint extension of D in L?(E). We
shall now investigate the kernel of D. Let ¢ € L?(FE) and assume that
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Dy = 0. By elliptic regularity, ¢ is a C*-section of E. Furthermore,
Proposition 2.7 implies that

(2.9) VPoeLX(E®(T"X)®") and [eli<CE) ¢l kEN,

for some constant C'(k) > 0 and all ¢ € ker D.
Now consider the restriction of ¢ to Rt x Z; C X. On this subman-
ifold we have
3}
D =M (% + Al):
where A; : C*(Z,,E,) - C>(Z,,E,) is a generalized Dirac operator
on the manifold Z;. Thus on R* x Z;,

0
(2.10) (—3—1) + Al)gp(v,z) = 0.
Next recall that the manifold Z;, defined by (1.1), is a manifold with a
cylindrical end. Moreover, the connection VZ! and the Hermitian metric
of the Clifford bundle E; are compatible with the product structure of
Z, on Rt x Y. Hence on Rt x Y, A; takes the form

(2.11) A :72(56; +B),

where u € RT, «, is Clifford multiplication by the outward unit normal
vector field to Y, and B, : C*(Y,S) — C*(Y,S) is a Dirac. operator
onY.

Since Z) is complete, A, is essentially self-adjoint in L*(Z;, E;) [11].
Let A; be the unique self-adjoint extension of A;. In §4 of [16], we have
described the spectral resolution of such operators. It follows that A4,
has only a point spectrum and an absolutely continuous spectrum. The
point spectrum consists of a sequence of eigenvalues --- < X; < Ay <

- of finite multiplicity, and the continuous spectrum has an explicit
description in terms of the generalized eigensections.

Since for almost all v > 0, ¢(v, ) belongs to L*(Z;, E;), we may ex-
pand ¢(v,-) in terms of the L?-eigensections and the generalized eigen-
sections of A;. Let L2(E,;) and L2(E,) denote the discrete and contin-
uous subspace of A4,, respectively. Denote by ¢4(v,-) (resp. @.(v,-))
the orthogonal projection of ¢(v,-) onto L3(E,) (resp. L2(E;)). Let
{¢;};ez be an orthonormal basis of L3(E;) consisting of eigensections
of A; with eigenvalues --- < A\; < Aj4; <---. Then we have

a(v,2) =3 _a;(v) ¢;(2)



ON THE L2-INDEX OF DIRAC OPERATORS ON MANIFOLDS 111

and the a;’s satisfy

8
(6v+/\) = 0.

Thus a;(v) = cje”%". Since ¢, is square integrable, it follows that
c; =0for A\; <0 and

(2.12) pulv,2) = 3 e y(2).

A;>0

Suppose that the enumeration of the eigenvalues of A; is chosen such
that A; > 0 is the smallest positive eigenvalue. Let T" > 1. Then we get

/ / lpa(v, 2)|* dz dv = Z l e~ 2T

A;j >0 J

e Th / lpa(v,2)|* dz dv
R+XZ1

< —2TA1

(2.13)

IA

llell®.

In the same way, we can derive a pointwise estimate. By the Sobolev
embedding theorem, we obtain

sup lps(2)] < C(1+ X))

for some constant C > 0, independent of j. Furthermore, we also have

Sl [ [ ot dsao <o
| Zlgodv,z zdv < |l ¢|*.

Hence |c;| < v/2X; || ¢ || and, for v > 1,

(214 lpa(v,2)] < C Y (L+XN)"e™ ol < e | ol

A; >0

Now we shall investigate .. Let P, be the positive spectral projec-
tion of the self-adjoint extension of the Dirac operator B, : C*(Y, S) —
C>(Y,S), defined by (2.11). Furthermore, let II denote the orthogonal
projection of L?(Y, S) onto the +i-eigenspace of 7,7y, : ker B; — ker B.
Set I = P, +II. Let {¢;}jen be an orthonormal basis of Ran(IlL;)
consisting of eigensections of B; with corresponding eigenvalues 0 <
H1 < pe <

Let £° be the Riemann surface associated with the functions /X & p;,
j € N, such that \/X £+ u; has positive imaginary part for y; sufficiently
large. The Riemann surface ¥* is a ramified double covering 7* : % — C
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of C with ramification locus {+u; | j € N}. To each ¢; there corre-
sponds a generalized eigensection E(¢;,A) € C*(Z;, E;) of D, which is
a meromorphic function of A € £* and satisfies

E(Qb],A) = WS(A)E(gbj,A), A € Zs,

(cf. [12]). The half-plane Im(A) > 0 can be identified with an open
subset F'P? of £°, the physical sheet, and each section E(¢;, A) is regular
on FP° = R. Then ¢, has an expansion of the form

(v, 2) = Z{ :O E(¢;, A, 2)aj(v, A) d7;(N)
(2.15) + [T B A8 a0

where ,

/A% — p?
dr;(A) = Y——L dA

27 ’

and a;,8; € L*(R* x [p;,00); dv dr;). Convergence of (2.15) has to be
understood in the L? sense. By (2.10), ; and §; are smooth functions
of v satisfying

a; (v, ) + Aa;(0,3) =0 and  —B;(v, ) — AG;(v, A) = 0.

3 2

v v
Hence o;(v,A) = a;(A)e™* and B;(v,\) = b;(A)e*. Since each g; is
square integrable, it follows that b; = 0 for all j € N, and (2.15) leads
to

(2.16) (v,72) Z/ )&= B¢y, A, 2) dr;(A).
Let T > 1. Then (2.16) implies
/ / |<pc'vz|2dzdv—2/ ]a]UA| dr;()) dv
T

(2.17) 2/:0 '“’(’\ e2T dr;())

A
1 ary
Zze 5

=1

s |a‘]

IA

7 (A).

3

o,
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First, assume that ker B, = 0. Then u; > 0 is the smallest positive
eigenvalue of By, and by (2.17) we get

@18) [ [ lew,2)f dzdo < O™ g P < O o,
T 21

where C > 0 is independent of . Similar estimates hold for the restric-
tion of ¢ to RT x Z,.

Let Dy be the Dirac operator defined by (2.3). Then we have
B, = —y,Dy. In particular, ker Dy = ker B;. If we combine (2.13),
(2.18) and the corresponding estimates with respect to Z,, we obtain

Proposition 2.19. Assume that ker Dy = 0. Let T > 1 and let Xp
be the manifold defined by (1.6). Then there exist constants C,c > 0
such that for ¢ € ker D, we have

| @ ds < ce T
X—-Xr

Proposition 2.19 combined with (2.9) implies that ker D is finite-
dimensional.

We shall now relax the assumption ker Dy = 0. For this purpose we
introduce an auxiliary differential operator L : C*(E) — C*(EQT*X)
as follows. Let w € A}(X) be a 1-form with compact support such that
|w(z)| =1 for all z € X,. Since X, has a nonempty boundary, such a
1-form always exists. Let ¢, € C5°(X) and suppose that ¢o(z) = 1 for
z € X,. Furthermore, let 9, € C®(R),: = 1,2, be such that ¥;(u) =1
for v > 1 and ¢;(u) = 0 for u < 0. We regard 1); as a smooth function
on Rt x Z; in the obvious way. Given ¢ € C(E), let ¢; denote the
restriction of ¢ to Rt x Z,. Then we set

(2.20) L(p ’Lﬁo(P@&)‘l"lﬁl ®d +’¢2—""®d

By (2.9), L induces a bounded linear operator L : ker D — L*(EQT*X).
Lemma 2.21. We have ker L = {0}.

Proof. Let ¢ € ker D and suppose that Ly = 0. Then it follows from
(2.20) that

0 0
elx, =0, Fp¢1 =0 and %@2:0-

By (2.12) and (2.16), the second equality implies that ¢; = 0. In the
same way we get ¢, = 0. Hence ¢ =0. q. e. d.
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Let T > 1 and let ¢ € ker D. By (2.20), we obtain

/X_XT ILop(z)*dz < /Too /Z1 ’%% (v,zl)’zdzldv

J ),

The integrals on the right-hand side can be estimated in the same way
as above. From (2.12) and (2.16), it follows that the first integral is
bounded by

P 2
a—(pz(u,zz)’ dzsdu.

1 oo )\ 2
Ce—cT ” © ”2 + 5/ >\2|a0(>\ )I e—2TAd>\
0

S Ce—cT “ ") ”2 + 1 /000 |a0(>‘)l2d>\

2172 A
1 o0 o0
<Ce @I+ [ [l P andy
T2 0 0
C,
ST—illcpH?,

where C,c > 0 are constants, independent of . A similar estimate
holds for the second integral. Thus we have proved.

Lemma 2.22. There ezists a constant C > 0 such that for T > 1
and ¢ € ker D, we have

[ 1Bl < I el

Corollary 2.23. Suppose that there ezists C > 0 such that || ¢ ||<
C || Ly || for all ¢ € ker D. Then ker D is finite-dimensional.

Proof. By Lemma 2.21, it is sufficient to show that L{ker D) is
finite-dimensional. Let

I:L(kerD) —» L*(E®T*X)

be the inclusion. For " > 0 we denote by Iz : L(ker D) — L2(EQT*X)
the composition of the restriction of sections to X7 and the canonical
inclusion. By Lemma 2.22, we have

(2.24) 11— 1Ip |< g T>1

Let H* (X7, E ® T*X) denote the Sobolev Space of the restriction of
E®T*X to Xp. Since X1 is compact, the canonical map

HYX7,E®T*X) - I*(X7,E®T*X)
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is a compact operator. Furthermore, from (2.9) it follows that L(ker D)
is contained in H*'(E ® T*X) and

H L(p HIS C H L(p ”01 © € kerD,

for some constant C > 0, independent of p. By Rellich’s compactness
theorem, Ir is a compact operator and hence, by (2.24), T is compact
too. Therefore, ker D is finite-dimensional. g.e.d.

Next we shall estimate the supremum norm of any ¢ € kerD. As
above, we consider the restriction of a given ¢ € ker D to Rt x Z;. By
Proposition 2.8, we have

sup |¢.(v,2)] < C || (I + A1) ec(v) ||,

z€Z1

where A, is the Dirac operator considered above. Let v > 1. Employing
(2.17), we get

I (I + A1) e (v) |I= Z/ (1+X)*"|a;(N)?e™**dr; (A)

J=17H

<o 3 e [ 1800

p; >0 Hi A

+ Cy= Z/m‘a”

pi=0
<O 3 [0 [ laoopeean i
Uj:l 0 Ky
1
=Ci— e |*.
v

Combining this with (2.14) gives
Lemma 2.25. There exists C > 0 such that for all v > 1 and
@ € ker D, the following inequality holds

sup p(v,2)| < =l pll, =12
\/’

If ker Dy =0, then we have exponential decay.
Now suppose that n = 2k, k € N. Let 7 = %7, ...y, be the canonical
involution of the Clifford bundle £ and let

E=E+EBE_

be the parallel orthogonal splitting of F into the +1-eigenbundles of 7.
Since n is even, 7 anticommutes with D and we get a pair of elliptic
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first order operators
Dy = C*(Ey) = C=(E5),

called chiral Dirac operators. Let Dy denote the closure of D, in L2,
Then we have
D=D,®D_. and D, =7D:.

By Corollary 2.24, ker D, and ker D_ are finite-dimensional. Therefore,
we can define the L?-index of D, by

(2.26) L?-Ind D, = dim(ker D,.) — dim(ker D_).

Remark. In general, D, is not a Fredholm operator. We observe
that D, is Fredholm if and only if 0 is not in the continuous spectrum of
D_7D, or, what is the same, if the continuous spectrum of D_D, has a
positive lower bound. In this case, the L?-index of D, equals the index
of the Fredholm operator D,. This implies that the L3-index of D,
is stable under compactly supported pertubations of D. If D, is not
Fredholm, then the L?*-index will be unstable in general. This makes it
difficult to compute the index for these cases.

3. L’-harmonic forms and cohomology

Let A*(X) be the space of C™~differential forms on X. In this section
we consider the Gaufi—-Bonnet operator d + d* : A*(X) — A*(X). This
is a generalized Dirac operator on X, which obviously satisfies (2.1) -
(2.4). Therefore, the results of the previous section can be applied to
this operator. Let A = (d + d*)? be the Laplace-Beltrami operator on
forms, and let A, be the restriction of A to the space A?(X) of C*
p—forms. We shall denote the self-adjoint extensions of d + d* and A in
L*A*(X) by d+d and A, respectively.

Let H{, (X) denote the space of square integrable harmonic forms on
X, that 1s,

(3.1) Hin(X) = {p € A(X) | Ap =0, [loll <oo}.

Correspondingly, #{,,(X) will denote the space of square integrable
harmonic p—forms on X. Since X is complete, 1, (X) equals the kernel

of d+d° (cf. [11]). In other words,
(X) = {p € A(X) | dp = d"p =0, |lgl| < oo} = ker (@ + ).

In this section, we prove
Proposition 3.2. The space ) (X) is finite-dimensional.
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Let H(,,(X;C) be the L?~cohomology of X. Recall that Hf; (X;C) is
the cohomology of the L?~de Rham complex consisting of all C*®°—forms
which together with their exterior derivative are square integrable [26].
Then #7,)(X) equals H{,(X;C) if and only if the essential spectrum
of A, has a positive lower bound. As we shall see in §6, this depends
on the cohomology of Y, M; and M,. If the essential spectrum of A,
contains zero, then H, (X;C) is infinite-dimensional.

Now we shall study the relation of #(,)(X) with the de Rham co-
homology of X. Let H*(X) be the de Rham cohomology of X with
complex coefficients and let H?(X) be the de Rham cohomology of X
with compact supports and complex coefficients. Set

HY(X) = Im(H (X) = H* (X)),

where ¢ is the canonical map. As mentioned above, a harmonic L2-form
¢ satisfies d¢ = 0 and d*¢ = 0. In particular, ¢ defines a cohomology
class [¢] in H*(X). In this way we obtain a canonical map

§ My (X) = H(X),

For a general complete manifold, this map will neither be injective,
nor surjective. In the present case, however, we can describe this map
completely.

Lemma 3.3. The image of j is contained in H(X).

Proof. First observe that by the construction of X, there is a
canonical retraction X — X,. Hence, H*(X) can be identified with
the image of H*(X,,0X,) in H*(X,) = H*(X). Let ¢ € H}(X). In
order to see that the cohomology class [¢] is contained in Hf zX ), it is
sufficient to show that

fe=0

for all cycles & in 80Xy = M, Uy M,. Using this decomposition of the
boundary, it follows that H,(0X,) has a basis which can be represented
by cycles a of the following form: There exist a cycle o in Y and
relative cycles «; in (M;,Y) such that

aai = aO, Z = 1127 a‘nd a = al UaO (_az)

Note that ay may be zero. In this case, ¢; is a cycle in M; and « is the
disjoint union of a; and as.

Let T > 0 and let Z; 7 be the manifold defined by (1.5). Then we
define relative cycles a; 7 in (Z; r,0Z; z) by

ai,T = Q4 Uao ([07T] X a0)7 l’; = 1727
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where we identify da; with {0} X ag. Set
ar = ayr U (—az7).

Then ar is a cycle in 80Xy = Z;r U Z,r. If we regard o and ar as
cycles in X7, then the construction of a7 implies that o and ar are
homologous. Since ¢ is closed, it follows that

/w:/‘w=/ w—/‘w,TZQ
« oT 1,7 o2, T

We shall now estimate the integrals on the right-hand side. For this
purpose we use the expansion of ¢ on Rt X Z; in terms of the eigensec-
tions of A;, ¢ = 1,2. It is sufficient to consider the integral over o 7.
We have to specialize the eigensection expansion (2.12) and (2.15) to
the present case. Let Az be the Laplacian on A*(Z;) and let Ay be
the Laplacian on A*(Y). Note that

AR x ¥) = (C=(RV)OA"(Y)) @ (A (RV)BA*(Y)).
Therefore, to each eigenform ¢ of Ay there correspond two general-
ized eigenforms of Az ; namely E(¢, A, 2z) and E(du A ¢, A\, 2). Let
iy 1 {v} x Z; C Rt x Z; be the inclusion and let

e1(v) = iy (elpr « z,)-

Let ¢y, ..., ¢, be an orthonormal basis of #*(Y'). Then from the above
remarks combined with (2.12) and (2.16) (specialized to the present
case), it follows that

o1 (v, 2) = é{ /0 " a;(\e " B(6;, A, 2) dA

(3.4) / b (N e E(du A d;, A, 2) d/\} + (v, 72),
where 1), satisfies
(3.5) sup | Y1 (T, z) |< Ce™ 7,

z2€Z1

with constants C, ¢ > 0, independent of T. The integrals converge in the
L? sense. Moreover, the functions a;()) and b;(\) are square integrable
with respect to the measure A~'d\. From (3.5) follows that

Jor®

(3.6) < CyTe T
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It remains to investigate the differential forms defined by the infinite
integrals on the right-hand side of (3.4). We consider the first type of
integrals. Let ¢ € H*(Y) and a € L*(R*; A~1d)). Put

1/Vv
w1 (¢ v) = /0 a(\)e " E(¢, \)d),
(3.7) () = /1 ;’oﬁ a(\)e E(p, \)dA.

It is clear that w;(¢,v) is a smooth differential form. The convergence
of the infinite integral is understood in the L? sense. Therefore, it
is not obvious that w,(¢,v) is a smooth differential form. To verify
smoothness, let v > 1 and m € N. By definition, we have

I (7+ Aen(gyo) | = [ fﬁ ()P + A e D) <

< Cpe™V? la(M\)[? A <Che V7.
/v A

By the Sobolev embedding theorem, this implies that ws(¢,v) is a
smooth form which satisfies

(3.8) sup | wa(e,v,2) |< Ce™V?, v>1,
2€Zy

for some constant C > 0. Put

W(¢J, ’U) =w (¢a ’U) + w2(¢7 ’U).
Our goal is to estimate [,  w(#,T) as T — co. By (3.8), [,, , wa(¢, T)

ag,

decays exponentially as T' — oo. To deal with w;(¢,T"), we observe that
on Rt x Y, E(¢,\) has an expansion of the form

E($, ), (u,y)) =e%¢(y) + ¥ (Cr(N)¢ + du A Ca(N)¢)
(3.9) + 57 e VETT (N + du AT2(N)e),

i #0

where C;(A\)¢ € H*(Y), and T;;(A\)¢ is contained in the p;-eigenspace
of Ay. The existence of the expansion (3.9) follows from (4.20) in [16],
specialized to the Laplace operator. Let x be the characteristic function
of Rt xY < Z; and set

E(¢$,X) = E($,)) — x[e7"¢ + **(C1(N)¢ + du A C2(A)g)].
It follows from (3.9) that there exists € > 0 such that for A < g, we have
[E(g, X, (uw,9)] < Ce™, (u,y) €RY x Zy.
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Put
1/VT -
H@T) = [ aWe TE$A)dx

Let 1/vVT < . Since a € L2(Rt, \"1d)), we get

1/vT
[ a@n|<c[" W Ta
o1, T 0 )

1/VT 1/2 ~
<af / eTdr) < o,
0

It remains to study the integral of the differential form

1/VT
L7 e e Txfer g + (i (08 + dun Co(N))] dA.

If we integrate this form over «a; r, we get

/Ol/ﬁ{ </a CQ(A)¢) a(\)e T /OT g du} A
_ i/ol/ﬁ ! _;MT (/a 02(/\)¢>) a(N)e T d.

By Schwarz’s inequality, this integral can be estimated by

1NVT |1 _ T2 1/2 1/VT 1/2
v LT s g / ()%
0 A 0 A

1/vVT
<o ([ uwrd).

Since a()) is square integrable with respect to the measure A~1dJ, the
right-hand side converges to zero as T — oo. If we replace ¢ in (3.7) by
du A ¢, we get the second type of forms which we have to consider. The
investigation of these forms integrated over ¢; r is completely analogous
to the previous case. The corresponding integrals tend also to 0 as

T — oo. Together with (3.4) and (3.6), we get

lim w=0.

T—o0 oa,r

The same holds for [, . Hence, J, @ =0 for all cycles & in 0X,.

By Lemma 3.3, 7 induces a map

(3.10) § My (X) = Hy (X).
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Now suppose that [¢] € H*(X) is represented by a closed C* form ¢
with compact support. In particular, ¢ is square integrable. Therefore,
by a theorem of de Rham-Kadaira [20, p. 169], we have

¢ =+ db,

where 1 € L2, dy = d*y = 0 and 0 is a current. Since H*(X) can be
computed from the complex of currents, it follows that the map (3.10)
is surjective.

To deal with the injectivity, we observe that the manifold X has a
natural compactification X obtained by adjoining copies of Z,, Z, and
Y at infinity. Putting r = 1/u and w = 1/v, we get natural coordinates
near the boundary.

Lemma 3.11. Each ¢ € ker D extends to a C* form on X.

Proof. Let ¢ € kerD. Denote by ¢; the restriction of ¢ to
Rt x Z;,1 = 1,2. Then ¢, can be written in the form (3.4) with forms
y; satisfying (3.5). Using Proposition 2.8, it is easy to generalize (3.5)
as follows: For all £ € N, there exist C; > 0 and ¢ > 0 such that

sup | V¥ (v,2) |< Cre™, keN i=1,2.
2€EZ;

Hence 1, and 1, extend to C'* forms on R x Z, and R x Z,, respec-
tively. To finish the argument, we have to consider the forms w; (¢, v)
and wy(¢,v) defined by (3.7). Again, by referring to the Sobolev em-
bedding theorem, it is easy to show that

| VEwy(h,v,2) |< Cre™, kEN,
for constants Cy, ¢ > 0. Thus, w, extends also to a C* form on R x Z.

Since E(¢, A, z) is analytic in A and smooth in z, we get

1/
@+ dJan (@0, <C [ Na(X)]e™ A
0

1/v% 12 7 yve 1/2
<C ( / ,\3@—2v*dx) ( / |a(A)|2%>
0 0

. 1/2
! / T ena) <&
~v? \Jo - 0?2’

which implies that w; extends to a C* form on R x Z, and hence, ¢
does so. By the same argument ¢, extends to a C'-form on R x Zy.

q.e.d.

Now recall that H*(X) = H*(X) can be computed from the de Rham

complex of C* forms on X. Let ¢ € 7, (X) and suppose that j(p) = 0.
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Then there exists a C* form on X such that ¢ = df. In particular, we
may assume that @ is bounded. Now we apply Green’s formula to the
compact manifold X7, T > 0. Since d*¢p = 0 and ¢ = df, we get

/ cp/\*:,oz/ di A *xp = A xp
Xr Xr 8Xr

(3.12) = 0]_ A *(P]_ + 02 A *(pz,
Z7 Zy T

where 8; and ; are the restrictions of 8 and ¢, respectively, to Rt x Z,.
To estimate the boundary integrals we use again (3.4) and its analogue
for ¢,. Since 9;(T) decays exponentially while 8 is bounded as 7" — oo,
we get

;N Axp; >0 as T — .
Zi7

The same argument applies to the forms wy(¢,T) and wq(du A ¢, T).
To determine the contribution of the forms w;(¢,T"), we observe that
|[E(¢, A\, 2)] < C, for 0 < A< ¢ and z € Z;,. Hence

1/VT
<CT / la(\)]e>T d
0

VT 1/2 VT d\ 1/2
<CT (/ Ae T d,\) (/ |a()\)|27>
] 0

ST 1/2 VT 1/2
—C / Ne* dx / a2
0 0 A

Since a()\) is square integrable with respect to the measure A\~1d), the
right-hand side converges to zero as 7' — co. The same holds for w; (duA
¢,T). By (3.12), we deduce that

‘/ZI,T 0, A *wy (@)

pAxp =0
Xr

as T — oo. This implies that ¢ = 0. Thus j is injective. We can now
summarize our results about the L2 harmonic forms by

Proposition 3.13. The canonical map H{, (X) — H*(X) induces
an tsomorphism

7 Hig(X)=H{ (X).

In particular, this proves Proposition 3.2.
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Next we shall investigate the L2-index of the signature operator. Sup-
pose that n = 2[ and let 7 be the involution of A*(X) which is defined
by

¢ =PV v for ¢ e AP(X).
Let A% (X) denote the +1-eigenspaces of 7. Since d + d* anticommutes

with 7,d + d* interchanges A% (X) and A* (X) and hence, defines by
restriction operators

D AL(X) = AL(X).

The operator D, is usually called signature operator. The involution 7
acts on H%,(X) and we denote the +1-eigenspaces of 7 by Hp,) (X).
Then it is easy to see that

L*Ind D, = dimH}y, , (X) — dimHfy, _(X).

By definition, 7 maps Hf,(X) onto H?é)’p (X). Let H{y ,(X) denote

the +1-eigenspaces of 7 acting in 7—[22) (X), and for p < [ set

Hiyy £(X) ={p 10| 0 € H{p(X)}.
Then it is clear that

Hiyy +(X) = DM (X).

p<l

Since dim Hf,) , (X) = dimHf,) _(X) for p <, it follows that
(3.14) L?-Ind D, = dimH{y, ,(X) — dim Hfy) _(X).

There are two cases that we have to distinguish depending on whether {
is odd or even. First, suppose that [ = 2k+ 1. In this case, the mapping
7 1 Hipy(X) — Hiy)(X) coincides with ix. Since * is a real operator,
it follows that the map ¢ — ¥ induces an isomorphism of 7-[22)‘ . onto
Hé?),—‘ Thus

L*IndD, =0, if |=2k+1.

So we can assume that n = 4k. Then on H?§(X), T coincides with *
which is a real operator. Furthermore under the isomorphism 7—[%5) (X)—
HP*(X), the quadratic form ¢ — (p, *@) on H?5 (X) corresponds to the

intersection form on H2*(X). This quadratic form is induced by the de-
generate quadratic form on H2*(X) = H**(X,,3X,) given by the cup
product. Poincaré duality for (Xo,3X,) shows that the radical is pre-
cisely the kernel of H**(X,,8X,) — H?**(X,). The signature Sign(Xo)
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of the 4k—dimensional manifold X, is defined to be the signature of the
intersection form on H2*(X;R). Then the above argument shows that

Sign(X,) = dimHZ ,(X) — dim % _(X),

which together with (3.14) yields
Proposition 3.15. Let Dy : AL (X) — A*(X) be the signature
operator. Then we have

L*-1Ind D, = Sign(Xo).

4. The heat kernel

Let D : C*(X,E) —» C*®(X, E) be a Dirac operator satisfying (2.1)
— (2.4) and consider the spinor Laplacian

A = D%

The purpose of this section is to construct the fundamental solution for
the heat equation (9/9t + A)p = 0.

Let X; be the manifold defined by (1.6) where 7' = 1. Then X,
is also a manifold with a corner at Y, and the boundary of X; is the
union of Z; ; and Z,;, where Z,; = M; U ([0,1] x Y) (see Fig. 3). Let
V = X1 Ug,, (—X1) be the C*° manifold obtained by gluing two copies
of X; along the submanifold Z, ; C X, of the boundary. Note that V' is
an oriented C* manifold with smooth boundary, and the Riemannian
metric on X; induces a smooth Riemannian metric on V which is a
product near the boundary. Let V be the double of this manifold. Then
V is a closed oriented C*° Riemannian manifold, and we may identify
X, with a submanifold of V. The bundle E, = E) X, also extends to a
Clifford bundle E over V. Let D be the corresponding generalized Dirac
operator and set A = D?. Let K(z,y,t) be the fundamental solution
for 3/3t+ A on V, and let Ko(z,y,t) be the restriction of the kernel K
to X;. The kernel K is the interior part of the parametrix.

Next we have to construct the exterior part of the parametrix. By
(2.1) and (2.2), it follows that on Rt x Z;, we have

e
ou?

We extend the right-hand side in the obvious way to a differential op-
erator A; on R x Z;. Let K;(z,y,t) be the fundamental solution for

(4.1) D? = — + A2 i=1,2.
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8/t + A;. By (4.1), we have

4.2)  Ki((u,w),(v,2),t) = At " Riw,zt), i=1,2,

where K; is the heat kernel for A? acting on C®(Z;, E;). Finally, by
(2.3) and (2.4) it follows that on (R*)? x Y, we have

g o?
w0l
As above, we extend the right-hand side in the obvious way to a differ-

ential operator A; on R? x Y, and we denote the fundamental solution
for 8/0t + A; by K3(z,y,t). Then we have

(4.3) D? = + D},

K3(('U‘1a Ug, w)7 (Ul y V2, z)v t)
uy — ;)2 Uy — Vg)?

(44) eXp(—( 1 " 1) ) exp(*( 2 m 2) )k t

. = 3 z7

Vart Vant s(w )

where K is the heat kernel for D2.

The heat kernels K; satisfy the standard short time asymptotic. Let
d(z,y) denote the geodesic distance of z,y € X.

Proposition 4.5. For all p,l € N, there exist constants C,cy, ¢y > 0
such that

a% V2 Ki(z,,1)| < Ct-(HI2 gort gerd’ e/
fort>0,i=0,1,2,3.

Proof. It is well-known that the heat kernel on a compact mani-
fold satisfies the estimate claimed by Proposition 4.5. Therefore, our
statement is obvious for K,. Since Y is compact, we can use (4.4) to
derive the required estimate for K3. We are left with K; and K,. By
(4.2), it is sufficient to prove the corresponding estimate for K, and K,
respectively. Since K, and K, are the heat kernels for spinor Laplacians
on manifolds with cylindrical ends, the required estimate follows from
(3.5) and (3.3) of [16]. q-e.d.

We shall now use the kernels K; to construct a parametrix for the
fundamental solution of 8/0t+ A. Let p(a,b) denote an increasing C*°—
function of the real variable u, such that p =0 for u < a and p =1 for
u > b. Define C°—functions as follows:

0 =1-p(3/4,7/8), x=p(0,1/4), &=p(3/8,5/8), ¢=1-¢
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Let u; be the normal direction to {0} x Z; C X. We consider ¢(u,),
¥ (uq) as functions on the cylinder [0, 1] X Z; C X and extend them in
the obvious way to functions ¢;, 1; on X. Similarly, we regard ¢(u,),
¥(uz) as functions on the cylinder [0,1] x Z,. Again we extend these
functions in the obvious way to functions @,, 2 on X. Then we set

Dy = 1 @2, Vo = 1)y 5.

Observe that the support of ®, and ¥, is contained in X;.

Next we consider x(u;), £(u;) as functions on [0,1] x Z; and extend
them by 1 to C°°—functions ®,, ¥; on Rt x Z;. In the same way we
define ®,, ¥, on RT x Z,. Note that we may extend ®,, ¥,, &, and ¥,
by zero to C®°—functions on X. Since (RT)? x Y is contained in both
R x Z, and R x Z,, we may restrict ®;, ¥, &, ¥, to C~-functions
&, ¥y, &y, ¥, on (RY)2x Y. Set

By =%, -3,, U3=10,. T,
Again we extend ®3, U3 by zero to C*—functions on X. Note that
U =1-9), Uy=1—19, U3=T,T=(1-1)(1—1),
implying that

(46) \Ijo—f—\I}l—f—\I}z—\I}g—_—l.
Set
2
(47) (E ya Zcﬁ'z .’L‘ ' Ys )\I}'L( ) - <I)3(.’L‘)K3(.’L‘,y,t) \1}3(?/)

=0
Lemma 4.8. For every f € C5°(X, E) we have

lim [ Qo,y.t) fl) dy = J(@)

t—0+ X

The proof follows immediately from the construction of @ and (4.6).
Set

(49) Q1(-’If,y,t) = (gt + A ) Q(iE,y,t),

where A is applied to the first variable. For every y € X, the support
of @:(+,y,t) is contained in

([0,1] x Z;) U ([0, 1] x Zs).
Lemma 4.10. Let 25 € Xy. There exist C,cy,c2 > 0 such that
(@11) (Qilay,t)| < Ceimanlt er o e
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forallz,y e X and 0 < ¢.

Proof. We shall estimate Q;(z,y,t) for z € [0,1] x Z;. The case
z € [0,1] x Z, is similar. Fix T > 0. First observe that by Proposition
4.5, we have

(4.12) 1Q1(z,y,t)| < Ct~ (/2 gart gmea d*(a,y)/t

Moreover, the definition of ®;, U, implies that there exists é > 0 such
that

d(supp (V®;),supp (¥;)) >4, :=0,...,3.

Hence
(4.13) d(z,y) > 6 whenever Q(z,y,t) #0.

Let z € X;. We also fix z, € X,. Since X, is compact, (4.11) follows
from (4.12) and (4.13). Next assume that z € [0,1] x (Z; — Z1,1), where
Z,, is defined by (1.5). For such z we have

(4.14) Qu(2,y,t) = (gg + A){<I>1 (z) Ki(z,y,t) U1(y)
- (1)3(‘1") K3((L‘,y,t) ‘IIS(y)}

Therefore, we can assume that y € Rt x Z;. We distinguish two cases:
a) ye R x Z;;.
Let z = (u,w) and y = (v,2) where u € [0,1], v € RY, w € Z;, and
z € Z, 1. From (4.2), (4.4), (4.12) and (4.13), it follows that

(4.15) IQI((U, w), (v, 2), t)| <0 ee1t—c2/t o—c2(v®+d*(w,2))/t

for certain constants Cy,c;, ¢, > 0. Using the compactness of X; again,
we can easily see that there exists ¢; > 0 such that

c3(d*(zo, T) + d*(20,y) + 1) < 1+0* + d*(w, 2),

which implies (4.11) in this case:

b) y € [1,00) X Z,.

By definition, we have ®;(z) = ®,(z) and ¥;3(z) = ¥y(z) for z €
[1,00) x Zy. Thus (4.14) yields

Qulau0) = (o + A){®1(a) [Kulo91) — Koloouo)] T )}
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Moreover, we may assume that £ = (uj,us,w), y = (v1,vs,2) where
Uy, U, V1,V2 € RY and w,z € Y. From (4.2) and (4.4) we have

Kl((ulau%w), (U11U2az)at) - K3((U1,’U.2,UJ), (Ul,v2,z)7t)

1 (us —02)2)

:\/mexp(— yr
x {Ralwr,0), 00,21, = —= ow(- 200 Ralw 0},

Furthermore, by the definition of ®;, we obtain ®; ((u;, us, w)) = ®;(uy)-
Combining these observations leads to

Ql((ulau% ’LU), (Ulav2a Z), t)
1 (uy —Uz)z)

= {—(b: (uz) + @, (up) (U22_tv2)} At eXp(_ 4t

(4.16)
X {f{l((ul,w),(vl,z),t) - \/% exp(—(—q%)——) K3(w,z,t)}.

By (3.5) of [16], we have

(0,0, 0,26 — 2= (-2 Rz,

(4.17)

ca(1 + d*(my, (u1, w)) + d*(my, (v1, Z))))

<, exp (clt - .

for some my € M; and constants Cs,c; > 0. Since 7 € Xj, (4.16) and
(4.17) imply that (4.11) holds in this case too. q.e.d.

We can now proceed in the standard way and construct the funda-
mental solution K from Q). We define inductively

Qi (2,3, 1 —//Qlwwt—T)Qm( wy,7)dwdr, m> 1.

Usually, a kernel obtained in this way is denoted by @Q; * @,,. By
Lemma 4.10, the w—integral is absolutely convergent and the following
estimate holds

IQm+1 (l" Y, t)‘

m e (1 + d*(zo,z) + d*(zo, y )))_

(4.18)
< o exp(clt — r
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Set

o0

P=3 (-1)"Qn.

m=1

By (4.18), this series is absolutely convergent and defines a smooth
kernel. Set

(4.19) K=Q+QxP.

Then we have
Proposition 4.20. The kernel K is the fundamental solution for
/0t + A on X. Moreover, the following estimate holds

|K(‘T7y7t) - Q(-’L‘,’y,t)l
<Cex (c t— ca(1 + d*(zo, 7) + dQ(iEo,'y)))
= Pl .

(4.21)

for t > 0 and certain constants C,c;,co > 0. A similar estimate holds
fOT‘ DIK(-T:, Y, t) - DZQ(xv Y, t)

The estimate (4.21) follows from (4.18). If we use Proposition 4.5,
then it is easy to extend (4.21) so that the derivatives are included. In
particular, (4.21) implies that K — @Q is the kernel of a Hilbert-Schmidt
operator.

We shall now modify the heat kernels K;, K, and K3 by introducing
Dirichlet boundary conditions. Let A; p, ¢ = 1,2, be the self-adjoint
extension of

9
- Ou?

i CSO(R-l— X Zi,E) —> L2(R+ X Zi,E),

which is obtained by introducing Dirichlet boundary conditions. Then
the kernel K; p of exp(—tA; p) is given by

Ki,D ((ua w)a (Ua Z), t)
(4.22)
= e el
i=1,2,

(u+v

}K(wzt)

where I~{i is the heat kernel for A?. Next consider

o2 0?

5@ " g TV GO(R) x V. E) - L((RY)" x V. B)
1
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and introduce Dirichlet boundary conditions. Let A; p be the corre-
sponding self-adjoint extension and let K5 p be the kernel of the heat
operator exp(—tA; p). Then Kj p is given by

Ka,D((Ulauza w)a (’01,92» z), t)

- zl_lyr_t{e"p(_(u1 ;tvl) ) - exp(- Lvl) )}
(4.23)
Ao~y e L2 2,

where K3 has the same meaning as in (4.4). We extend the heat opera-
tors exp(—tA; p), exp(—tA, p) and exp(—tA; p) to bounded operators
in L*(X, E), and put them equal to zero on the orthogonal complement
of the subspaces L*(R* x Z,, E), L*(R* x Z,, E) and L*((R*)? x Y, E),
respectively. We can now prove

Theorem 4.24. Let the notation be as above. Then for each t > 0,
the operator

e—tZ — e"tALp _ othap | o—tAsp

is a Hilbert-Schmidt operator.

Proof. We extend the kernels K; p, ¢ = 1,2, 3, by zero to kernels on
X x X and we denote these kernels also by K; p. To prove the theorem,
we have to show that

(4.25)
/X/XIK(fE,y,t)—Kl,D(m,y,t)—Kz,D(x,y,t)+K3,D(x,y,t)|2dmdy < 0.

By (4.21), we may replace K by the parametrix . Since X, is compact,
we can remove K, from the parametrix. Let x;, ¢ = 1,2, be the char-
acteristic function of Rt x Z;, C X and let x5 denote the characteristic
function of (R*)? xY C X. Let K;, 1 = 1,2, 3, be the kernels defined
by (4.2) and (4.4), respectively, and set

2

Qz,y,t) = > xi(@) Ki(z, 4, Ox:(y) — x3(2)Ks(z,y,t)x3(y)-

i=1
Now observe that
(4-26) K0, — xiKixi = (‘I’i—Xi)Ki‘I’i+XiKi(‘I’i—Xi)a 1=1,2,3.

Furthermore, by definition, the support of each of the functions ®; — y;
and ¥; — x;, 1 = 1,2,3, is contained in ([0,1] x Z;) U ([0,1] x Z).
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Therefore, we may use Proposition 4.5 and proceed in essentially the
same way as in the proof of Lemma 4.10 to show that

(427) [QGy.1) - Q@,9,8)| < C exp(—c(d(z0, ) + &*(50,9)) /1),

for some zo € X,. Hence, in order to prove (4.25), we can replace K by
@, that is, we have to investigate

(4.28)  Q(z,2',t) — K, p(z,2',t) — Ky p(z,2',t) + K3 p(z,2',1).

This kernel vanishes, unless z,z' € R* x Z; or z,z' € Rt x Z,. Consider
the first case, that is, z = (u;,w), ' = (v, 2), w,z € Z;. Suppose that
w € M;. Then the kernel (4.28) equals

1 ex (— (Ul +’U1)2
Vit P 41

By (3.5) of [16], |K,(w, z,t)| belongs to L2(M; x Z;). Hence, the kernel
(4.28) is square integrable on (R* x M;) x (R* x Z,), and by symmetry,
it is also square integrable on (R* x Z;) x (Rt x M;). It remains to
consider the case £ = (u;,u2,y) and =’ = (v1,vs,7'), y,4' € Y. Then
(4.28) equals

) K1 (w, 2,t).

(u; +v1)?

1
T exp(—~———— n )
X {f(l((uz,y),(vz,y’),t) — \/iﬁ exp(_wf_) Rg(y,y',t)}

1 (U2 + ’U2)2
e — — e
VAant xp( 4¢ )
1 (ug —v

X {R2((uluy)7 (vl,yl)vt) - \/m exp('""'_z—tl_)z) I~(3(y’y',t)}

" (_(Ul + 1) ) exp(— (us jl_tUZ)

+

) Rii(y’ylat)'

Since Y is compact, the third term is square integrable on (R*)?xY. To
deal with the first two terms, we refer again to the estimate (3.5) of [16]
from which we deduce that these two terms are also square integrable
on (R")? x Y. Combining our results yields the required (4.25). g.e.d.

By a more elaborate method one can improve the statement of The-
orem 4.24 by showing that the combination of the heat operators is the
trace class. This result will be important for the investigation of the
continuous spectrum.
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5. The analytic continuation of the resolvent

The notation will be the same as in the previous section. In particular,
A = D? is the spinor Laplacian associated with some Dirac operator
D. Our purpose is to extend the resolvent (A — A2)~! analytically as a
function of A to a neighborhood of A = 0. In the present paper we study
this problem only under the additional assumption that ker Dy = 0,
where Dy is the Dirac operator attached to the corner Y.

Let A;, j = 1,2, be the self-adjoint extension of the Dirac operator
A; 1 C°(Z;,FE;) - L*(Z;,E;) defined by (2.1). To begin with, we
construct a parametrix for (A5 — A?)7!, Im(A) > 0. Recall that on
Rt xY C Z;, A} takes the form

2
A2 = —% + D%.
This follows immediately from (2.1)-(2.4). Let {¢;}ien be an orthonor-
mal basis for L2(Y, S) consisting of eigensections of D?, with correspond-
ing eigenvalues 0 < p; < pus < ---. For u # v, we put

H((u,y), (v,%), )

1 Sy T
(5.1) = e\/*—m———_—)\—;— di(y) @ di(y'), Im(X) > 0.

Then H(A) is the kernel of the parametrix at infinity. We glue it to

an interior parametrix which we construct as follows. Let Z;, = Z;; U
(—Z;1) be the double of the compact manifold Z;; which is defined by
(1.5). The operator A?, restricted to Z;,, has a natural extension to

an elliptic operator on Zj,l, and we denote its resolvent by @Q;,()\). Let
p(a,b) € C°(R) be the function introduced in §4 and put

®;2 = p(1/4,5/16), U2 = p(3/8,5/8),
O, =1-— p(7/8,1), U =1~ Uy,

We regard ®;;, ¥, 4,7 € {1,2}, as functions on [0,1] x Y and extend
them to C° functions on Z; in the obvious way. Put

(5.2) Pi(A) =9,Q:1 (N8 + VinH(A)®j2, Im(A) >0.

Then we have

(5.3) Pi(A) (A3 - X?) =1d + K;()),

where K;()) has a smooth kernel K;(z,2',A) which satisfies
supp,. K;(z,2',A) C (0,1) xY
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and

Ki(z,2’,A\) =0 for d(z,2') <1/16.
This implies that K;(A) is a holomorphic family of compact operators
in L2. Moreover, from (5.1), it follows that there exists C > 0 such that
| K;(EA) [[< C/A, A > 1. Thus Id+K;(i)) is invertible for A >> 0 and
hence, (Id +Kj()\))_1 is a meromorphic function on Im(A) > 0 [21]. By
(5.3), we get

(5.4) (A2 = X2)~! = ([d+K;(N) T P(2), Im(}) > 0.

Lemma 5.5. For each X in the half-plane Im(A) > 0,
(A2 ~ X2~ — P;()) is a compact operator in L.
Proof. By (5.4), we have

(5.6) (AZ—X2)"' — P,()) = —(Id+K;(N) T K;(NF;(A), Im(A) >0,

and the claimed result follows from the compactness of K;(A). q.e.d.
_ Now we construct a parametrix for (A=X?)"1. Let A;,i=1,2,3, and
A be the differential operators introduced at the beginning of §4. Let
A; be the unique self-adjoint extension of A;. Note that A;, i = 1,2,
are self-adjoint operators in L*(R x Z;, F;), and A; is a self-adjoint
operator in L2(R? x Y, S). Here E; and S denote the pullbacks of the
corresponding bundles over Z; and Y, respectively, to vector bundles
over R x Z* and R? x Y, respectively. Put

RN = (A, =271, Im(A) >0,i=1,2,3.
Furthermore, let
Ro(A) = (A - AH)~Y,  Im()) > 0.
Let ®;,¥; € C*(X), 1 =0,...,3, be the functions introduced in §4. Put

2
5.7 P =3 WR(ND; — UsRs(\)5, Im(A) > 0.

=0
Then P(}) is a bounded operator in L?, and we shall now verify that
P(}) is a parametrix for (A — A%)~!. Put

(5.8) G(\) = PQA)(A -2 —I1d, Im()) > 0.

Then we have to show that G()) is a compact operator in L?. By (5.7)

we may write
2

G(A) =3 _Gi() = Gs(N),

=0
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where
(5.9) G,(0) = (W;R;()®,)(A - 3?) — U;1d.

Since ®,, ¥, have compact support, it follows from Rellich’s compact-
ness theorem that Go()) is a holomorphic function on the upper half-
plane with values in the compact operators in L2. For 7 = 1,2 we
have

d \ 0%, 2?9,
(5-10) G;(A) = =¥, (Rj(/\) ° %)% - ‘I’J'Rj(/\)ggjz—,
and R;(A) is given by the operator valued kernel
1 > .
(5.11) Ry(w,0,3) = 5= / ) (A2 = N2 4 £2)7 .

Since || (A3 -A24+£%)7 [|= 1/ dist(R*, A>—£?), the integral is absolutely
convergent. If u # v, we can integrate by parts for N € N, to get

R;(u,v,A)
(5.12)
- (_2172 (w—v)™N /_o:o gié(uv) (%)N[(Af -\ 4 §2)_1] dt.

If £ > n, then (A? — X* + £%)7* has a continuous kernel. Let T' > 0
and let Z;7 be defined by (1.5). Since 8®,/0v; and ¥; have dis-
joint supports, from (5.10) and (5.12) it follows that the restriction
of G;(X) to Rt x Z; 7 is Hilbert-Schmidt. Let x;r be the characteristic
function of Rt x Z;7 C R x Z;. Suppose that z € M; C Z; and
z' € [1,00) x Y C Z;. Then by (5.2) we get P;(z,2',A) = 0. Hence, for
T>1,

X50R;(w, v, \)(1 = x;.1)
(5.13)

= [ et -N ) - BV )

T o

First integrating by parts and then applying Lemma 5.5 show that
X5,0G;(A)(1 — x;r) is a compact operator in L.

Let 6 be the characteristic function of (R*)? x Y € X. Then our
investigation of G(A) is reduced to the study of Z?zl 0G;(X)0 —0G3(N)6.
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Using the definiton of ®3; and U3, we get

: 820
> 0G;(\)0 — 0G3(N)0 = — T {R,(\) — UyR;(\)®,} auzl
Jj=1 1
9 100
— 0 [{Ri()) — TRy (N2} o0 3_1)1] E;Tl
3,
(5.14) — U {Re(A) - LiRs (N1} —
2
9 100
— \I’g [{Rz()\) - \I’le()\)(I)l o a_’uz] 8722

We consider the first term. Let H()\) be the operator in L*(R* x Y, E;),
which is defined by the kernel (5.1). Then R3()) can be represented by
the operator valued kernel

1 .
Ry(u,0,)) = - / €6 [ (/N ZE%)d¢, Tm()) > 0.
The integral is absolutely convergent. Now observe that the paramet-
rices P;()\) and H()) differ by a compact operator. Hence, up to a
compact operator, the first term on the right of (5.14) can be written
as ,

(5.15) iwl{
2r ul] — v1

* i€(uy—v1 0 — | 8%
/_weﬁ( )EE[(A%—/\2+£2) 1 —Pl(\/A2_f2):| dc’} aTll'
The integral is absolutely convergent. Since
supp(0®,/0dv;) C (0,1) x Z,

and 0®,/0v;, ¥; have disjoint supports, it follows from Lemma 5.5 that
(5.15) is a compact operator in L?. The remaining terms in (5.14) can be
treated in the same way. Using (5.9) one can show that || G(i)) ||< C/A,
A > 1. Thus we proved

Lemma 5.16. Let P()\) be defined by (5.7). Then we have

POY(A -2 =1d +G(\), Im(\) >0,

where G()) is a holomorphic function on the upper half-plane with val-
ues in the compact operators in L*(X, E). Moreover, there exists C > 0
such that || G(i)) [|< C/X for A > 1.

By Lemma 5.16, Id +G(i)) is invertible for A > 0. Hence A —
(Id —i—G()\))_1 is a meromorphic function on the upper half-plane with
values in the bounded operators in L*(X, E) [21]. Thus we get

(5.17) (B =)~ = (Id+G(\) " P()), Im()\) > 0.
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We shall use (5.17) to extend the resolvent to a meromorphlc function
in a neighborhood of zero.

Let W; C X, i = 1,2, be the submanifolds defined by (1.2) and recall
the decomposition (1.3). Let p; € C>(X) be such that p;|W; = 1,
p(ug, z;) = pi(ug) for (ug,z) € R x Z; and p;(u,2;) = u; for u; > 1.
Set

p=p+ pa
Given ¢ € R, we define a weighted L%-space by

LAX,E) = {¢: X =E | p ameasurable section and

(5.18) / lo(z)]? e27) dz < oo}
X

Note that for § > 0 the following inclusions hold:

(5.19) LYX,E) C I*(X,E) C L’ 4{(X,E).

Given 4,6’ € R, we denote by L(L(X,FE),L%(X,E)) the space of
bounded linear operators from L}(X,E) into L2 (X,E). Let x; > 0
be the smallest positive eigenvalue of A2, 1 = 1,2. Put

|
50 = 5 mln{\//'l‘_h \/aa \/K‘_2}a
and let
(5.20) Q={2eC|Im(A\)>0U{XeC||\ <}

Lemma 5.21. Let 0 < § < &. Suppose that ker Dy = 0. Then the
parametriz P(\) extends from the upper half-plane to a meromorphic
function on Q with values in the space L(L}(X, E),L?4(X, E)).

Proof. Let 0 < . We have to show that each term on the right-
hand side of (5.7) extends to a meromorphic function on . Since A is
an elliptic operator on a closed manifold, ¥y Ry(A)®, is a meromorphic
function on the whole complex plane with values in the bounded oper-
ators in L?(X, E). Using the inclusions (5.19), ¥oRy(2\)®, becomes a
meromorphic family on C with values in £L({L}(X, E), L? ;(X, E)). Next
consider R3(}). Let S be the pullback of § — Y to R? x Y. Given
¢ € L}(R? x Y, 5), let $(&,y) denote the Fourier transform of ¢(u,y)
with respect to the u—variables. Recall that Az = —8?/9u? — 8% /du3 +
D3.. Hence, we may write R3(A) in the form

(Ba(N)e) (u,y)

(5.22)

-1 /IR S DY+ 1| 1P =3) 7 (9(&,9)) d€, Im() > 0.

472
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Since D% is self-adjoint and nonnegative, we have

I (D24 11 €17 =32 7" lI= (dist(RT, A2~ || € )",

which implies that the integral (5.22) is absolutely convergent for
Im(A) > 0. If ker Dy = 0, then the spectrum of D% is contained
in [p;,00), u; > 0. Therefore, the right-hand side of (5.22) defines
a bounded operator in L? for all A € Q. Let §, > § > 0 be given.
Using (5.19), we obtain a holomorphic function on 2 with values in

It remains to investigate R;()), j = 1,2. If ker Dy = 0, then it follows
from Theorem 4.10 of [16] that the continuous spectrum of A% equals
[p1,00), where p; > 0. Let L*(Z;, E;)* be the orthogonal complement
of ker A; in L?(Z;,E;), and let A;; denote the restriction of A; to
L?(Z;, E;)*. Then the spectrum of (A;;)? is contained in [y, 00). Since

A; = —0%/0u? + A3, we get a corresponding decomposition for Aj;
namely
(523) Zj = Zj’l ©® Zj,Z-

The spectrum of A, is also contained in [u;,00), and A;, is the self-

adjoint extension of 8%/9u® ® Id, acting in C°(R) ® ker A;. Let
Rji(N) = (B = X)7,

1,7 € {1,2}. Then we have

(5.24) R;(\) = R;u() ® Ryz(Y), j=1,2, Im(X) > 0.

Since a(A;1) C [p1,00), it follows that R, ;(A) is a holomorphic function
on Q with values in the bounded operators in L?(X, E). Using (5.19), we
get a holomorphic function on Q with values in £(L2(X, E), L? ;(X, E)).
Let ©q,...,om; be an orthonormal basis for ker A;. Then for u; # v;,
the kernel of R;2(}) is given by

Rja((u), ), (v5,2), A)
1 o]
= X elAlu’ g ZQD;(Zj) ® gol(z;), Irn()\) > 0.
=1

(5.25)

This kernel has an obvious extension to a meromorphic function on

C, and for 0 < § < 4§, the extended kernel defines a meromorphic

function on Q with values in the space L(L:(X, E), L? ;(X,E)). Thus

for all terms on the right-hand side of (5.7), we have constructed analytic

extensions with the desired properties. q.e.d.
Let

Q= {AeC|Im() > |Re(N)|}U{X € C||A <&}
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Lemma 5.26. Let 0 < § < 8, and suppose that ker Dy = 0.
Then the operator G(}), defined by (5.8), extends from the upper half-
plane to a meromorphic function A € ; — G(A\) of compact opera-
tors in L? ;(X, E). Moreover, there exists C > 0 such that for X > 1,
| G(EA) [|l-s< C/A.

Proof. Let 0 < & < &. First we show that G()\) extends to a
meromorphic function A € Q; — G()\) € L((L%25(X,E)). As above,
we write G()\) = E§=0 G;(X) — G3(X), where G;(}) is defined by (5.9).
The statement of the lemma holds obviously for G,()). To treat Rz(A),
we consider the weighted L? space L2 ;(R? x Y, S) defined as the space
of measurable sections which are square integrable with respect to the
weight function e?¥(m1+u2) § € R. For p € C°(R2 xY, S) and 6, > & > 0,
put
BsNe=pz [ d@O(DL+g+g-N) "0 v) &, A

7% Jim(g)=5
Since the spectrum of D} is contained in [u;,00), the integral is ab-
solutely convergent for A € Q;. Then R3;(\) extends to a bounded
operator in L? ;(R? x Y, §), which coincides with R3()\) on the subspace
L*(R? x Y, S5). By (5.9) we get a holomorphic function

A€ = Gs(\) e L(L%4(X, E)).

Next consider G;(A), 7 = 1,2. We use (5.10) to express G;(]A) in terms
of R;(A). If we substitute the decomposition (5.24) on the right-hand
side of (5.10), we obtain a corresponding decomposition

(5.27) G;(N) = G1()) @ G;2(N).

Consider the kernel (5.25) of R;(A). We observe that by (4.1) of [16],
each ¢ € ker A;, || ¢ ||= 1, satisfies |p(u,y)] < Ce M foru e RT,y €Y.
Using (5.25), it follows that G;2()) extends from the upper half-plane
to a meromorphic function A € Q — G;,(\) € L(L?4(X,E)). The
resolvent R;;(\) has the following operator valued kernel

Rj,l(uav’/\)
(5.28) o [ I () e - X Ty 0.

~ o
By definition, the spectrum of (A;;)? is contained in {u;,00). Therefore
the right-hand side of (5.28) is convergent for A € Q. To study (5.28)
we introduce weighted L? spaces for Z;. Let 0; € C*°(Z;) be such that
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o;(u,y) = u for (u,y) € [1,00) x Y. For § € R let
Li(Z;,E;)={p:Z; + E; | ¢ ameasurable section and

/ lp(2)[? €¥9:) dz < o0}.
Z;

Note that for é > 0, we have the following inclusions:
(5.29) Li(Z;,E;) C L*(Z;, E;) C L? 4(Z;, E;).

Our goal is to extend ((A;1)* + &% — /\2)_1 to a bounded operator in
L2 ,(Z;,E;) for X € Q. Let L? ;,(Rx Y, S) be the corresponding local L?

space with weight function e=2*. For ¢ € CP(R x Y, S) let (¢, y) be
the Fourier transform of % (u,y) with respect to the u—variable, and set

(HMN) (u,y)

(5.30)
1 - o
- ﬂ/l (©)=5 " (D} + € - N) 7 ($(&,v)) d,
A e

Then H()\) extends to a bounded operator in L?4(R x Y,5), which
coincides with H()) on the subspace L?(R x Y, 5). Being the resolvent
of an elliptic operator on a compact manifold, @;:(}) is a meromorphic
function on C. If @;:()) has a pole at A = 0, we remove the contribution
of this pole and denote the resulting kernel by Qj,l(/\). If we pick §p > 0
sufficiently small, then Q;,(}) is holomorphic in Q. Put

PJ(A) = ‘IIjIQj,l(A)le + ‘Iljz.g(A)(pjy, A E Ql-

Then P;()), A € 4, is a holomorphic family of bounded operators in
L? (Z;, E;). Tt follows from (5.30) that there exists C' > 0 such that

7
| B0 les< C A+ ND)™, Ae .

By the same argument one can prove that the operators K;(A) in (5.3)
extend to a holomorphic family A € Q — f(j(/\) of compact operators
in L2 ;(Z;, E;), and for A > 1 the norm of K;(i)) is bounded by CA~*.
Hence, A € 2 + (Id+K;(A))”" is a meromorphic function of bounded
operators in L% ;(Z;, E;) [21]. Moreover, for A € Q, |A| > C we have
I (1d+E;(X) " [-s< 2. Put

-1

Rz, (M) = (ld+E;(3)

Combining our results with (5.4), we obtain

Pi(0).
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Lemma 5.31. Let 0 < § < &. The resolvent (A5 — \?)~! extends
from the upper half-plane to a meromorphic function

Ae = Rz, (M) € [r(Lz_ts(Zjan))'

Moreover, there exists C > 0 such that Rz, ()\) is holomorphic in ©, N
{A € C| |\ = C} and satisfies

| Rz;(A) |l-s< C 1+ AP, AeQy.

Suppose that A € Q, is a pole of Rz, ()). It follows from (5.3) that
there exists ¢ € L? ;(Z;, E;) such that AZp = A%p. On R* XY, we may
expand ¢ in terms of the eigensections {¢ }ien of DZ:

plu,y) = i(aze_ Vi=du 4 peVim=2? u) #i(y)-

=1

Here the square root has been chosen such that Im(v/; — A?) > 0 for
all A in the upper half-plane. If Im()\) # 0, then Re(v/u; — A%) # 0 and
we may pick § > 0 such that |Re(vp — A?)| > 6 for all | € N. Thus
 is square integrable and ,therefore, vanishes if Im()) # 0. By Lemma
5.31, Rz,()\) has only finitely many poles in ©;. Hence, we may pick
do > 6 > 0 such that the only poles of Rz, ()) in Q, are real. But, by
our choice of &y, the only possible pole can occur at A = 0. Let Rz, ;(})
be the operator obtained by removing the contribution of the pole at
A =0. Then Rz, ;(}) is still a bounded operator in L? ;(Z;, E;), which
is a holomorphic function of A € £2,. Put

~ 1 Sl

(532) Rj,l (U'a v, A) = 2_‘ / ezf(u—v) RZ_-,-,I (\/ A2 — 62) d{, A€ QE.
T J-co

By Lemma 5.31, the integral is absolutely convergent, and for all

u,v € R the kernel defines a bounded operator in L?;(Z;, E;). From

the construction~it is obvious that for A € Q;, Rj,l(A) is an extension

of R;1(A). Let R;2()\) be the extension of the operator defined by the

kernel (5.25), and put

R;(A) = R;j1(\) ® R;2(N).

We replace R;(\) by R;()) on the right-hand side of (5.10), and denote
the resulting kernel by G;(A). Since the support of 0®,/0v; is contained
in [0,1] x Z;, it follows from Lemma 5.31 that G,()) defines a bounded
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operator in L2 ;(X, E). Let

=3 G;(N) - Gs(\).

j=0
Summarizing our results, we have proved that
AE = GO € L(L?4(X,E))

is a meromorphic function which extends G()).

It remains to verify that G()) is compact. To establish compactness,
we may proceed in essentially the same way as in the proof of Lemma
5.16. Let @ be the characteristic function of (R*)> xY C X. Let A € Q.
Then #G()\)8 is given by

. . ¥,
OGN0 = — U1 {R1(A) — UaRs(N) @} —- 07

. 6‘ 09,
-, [{R1 (A — ‘I’2R3(/\)q)2 o 5’1;] 3—'01

. o? <I>2

(5.33) — Uy {Ry(\) — T R5(N)®, }

. 6‘ 0%,
- ‘Pz[{Rz(A) - ‘I’1R3 )®1} o (%2] vy’

where Rj (A), 4 = 1,2,3, are the operators introduced above. Consider
the first term. Observe that R3(\) can be written as

Foluyv, ) = o= [ €560 (/AT E) de.

T

Now replace H()) by the parametrix P;(}), (5.30) and (5.32) to show
that, up to a compact operator in L2 ;(X, F), Ry(A) — U2 R3(\)P, equals
1

N /_o:o eib(u—v) (Id .1_}21(1 /)2 _‘_52))‘11%1(\/” — 52)131(\/>\2 — 52) d¢

27

Since K;()), A € 9, is a compact operator in L2 ;(Z;, E;), it follows that
the first term on the right-hand side of (5.33) is a compact operator in
L? ((Z;, E;). The other terms can be treated in the same way. Thus, we
obtain that 8G'()\)8 is a compact operator. Let x;,r be the characteristic
functions defined above. By a similar argument, it can be shown that
xi50B;(M(1 = x37), 5 = 1,2, is compact. This completes the proof of
the compactness of G()\). The claimed estimate of the norm follows

directly from the definiton of the analytic continuation of the operators
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By Lemma 5.26, Id +G(i)) is invertible for A > 0. Since G()) is
compact, we get a meromorphic function

AE Qo (Id+G(N) 7 € L(L24(X, E))

[21]. Together with (5.17) and Lemma 5.21, we obtain

Theorem 5.34. Suppose that ker Dy = 0. For every € > 0 there
exists 8, 0 < & < &y, such that the resolvent (A — X?)~! admits an ana-
lytic continuation from the upper half-plane to a meromorphic function

A€ Q — R(\) € L(LAX,E), L2,(X, E)).

6. The continuous spectrum near zero

In this section we shall investigate the continuous spectrum of A = D?
near zero. Since our approach depends on the analytic continuation of
the resolvent, we can treat this problem only under the assumption that
ker Dy = 0.

Let A; be the self-adjoint extension of the Dirac operator
A; 1 C°(Z;,E;) — L*(Z;,E;) defined by (2.1). Our first result con-
cerning the continuous spectrum of A is

Proposition 6.1. Suppose that ker Dy =0 and ker A; =0, i =1, 2.
Then the essential spectrum of A has e positive lower bound.

Proof. Let A;p, i =1,2,3, be the Dirichlet Laplacians introduced
in §4 (cf. Theorem 4.24). If ker Dy = 0, then the spectrum of D2 has a
positive lower bound p; > 0, and from the definition of Aj; p it follows
that

(Aspp,0) 2 pi 0 |I?, € CP((RY)? x Y, E).
Thus, the spectrum of Az p is contained in [u;,00). Next observe that
by Theorem 4.10 of [16], the assumption ker Dy = 0 implies also that
the continuous spectrum of 4; has a gap at zero. Since ker 4; = 0,
the spectrum of .A? has a positive lower bound. From the definition of

A; p, we deduce that the same holds for the spectrum of A; p, i =1, 2.
Therefore, there exists ¢ > 0 such that for every A > 0, we have

1 .
H (Ai,D + A)_l ”S m, 1=1,2,3.

This estimate of the norm implies that the spectrum of
(AI,D' + )\)_1 + (AQ,D + )\)_1 - (A37D + )\)_1

is contained in (—3/(c+ A),3/(c + A)). Let A be a positive self-adjoint
operator in some Hilbert space. Then for Re(\) > 0, the resolvent of A
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is given by
(A+ N1 = /000 e~ et dt.
From this observation and Theorem 4.24, it follows that the operator
A+ = [(Ap+ A7+ (Bep + 071 = (Agp + )77

is compact. Applying Lemma 3, Ch. XIII, §4, of [19], we conclude
that the essential spectrum of (A + A\)~! is contained in [0,3/(c + A)).
This fact combined with Lemma 2, Ch. XIII, §4, of [19] yields that the
essential spectrum of A is contained in [(c — 2))/3,00). Since A > 0
is arbitrary, the essential spectrum of A has the lower bound ¢/3 > 0.
g.e.d.

As Proposition 6.1 shows, the continuous spectrum of A near zero
is completely determined by ker Dy, ker 4, and ker 4,. We shall now
study the case where ker Dy = 0, but at least one of the spaces ker A;,
i = 1,2, is nonzero. Then the argument used in the proof of Propo-
sition 6.1 implies that the continuous spectrum of A extends down to
zero. Our purpose is to construct generalized eigensections of A, asso-
ciated with elements of ker .A;, and to describe explicitly the continuous
spectrum of A near zero in terms of these eigensections.

Let ¢ € ker A; and let A € C. Define h;(¢,A) € C*(Rt x Z;, E) by

by A, (), 2;)) = e (z;).
Note that h;(¢, M) satisfies

62) (- 882+A2) B, (4, 25)) = N hy(, X, (g, 29))-

Let f € C*(R) be such that f(u) =0 foru <1 and f(u) =1 for u > 2.
Define f; € C®(R" x Z;) by f;(u;,2;) = f(u;) and then extend this
function by zero to a smooth function on X. Using (4.1) together with
(6.2), we obtain that (A—A?){f;h;(#, A)) is a smooth section of £ which
belongs to L?(X, E). Hence we can apply the resolvent (A — A?)~! to
this section. Put

(6.3) F@N =Fihs(8.2) = (B=3)7 (A -x)( f]I ,A)%,

Then F;(¢, M) belongs to C*(X, E) and satisfies
(6.4) AFy($,)) = XFy($,)), Tm(}) > 0.
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Since ¢ € ker A;, it follows from (4.6) in [16] that there exists C > 0
such that
|$(u, )| < Ce™2, w20,y €Y,

where p; > 0 is the smallest positive eigenvalue of Dy. Let
0 < ¢ < min{p:1/2,é0}. Then (A — A?)(f;h;(¢,2)) is contained in
L%(X,FE) for all A € C. Since ker Dy = 0, we can apply Theorem 5.34
which implies that the right-hand side of (6.3) extends to a meromor-
phic function A € Q — F;(¢,\) € L? 4(X, E). In particular, F;(¢, ) is
locally integrable, and therefore we can apply A in the distributional
sense. By (6.4) we get (A — X2)F;(¢,A) = 0 for Im(A) > 0. Since
(A — A2?)F;(¢, ) is a meromorphic function, it vanishes for all A € .
By elliptic regularity, it follows that F;(¢,A) € C*(X,E). Thus we
have proved

Theorem 6.5. The section F;(¢,\) defined by (6.3) extends to a
meromorphic function A € Q — F;($,A) € L2 4(X, E) with the following
properties:

1) F;($, M, z) is smooth in z € X and satisfies

(A —X)Fj(,)) =0, Ae.

2) For Im(X\) > 0, f;h;(¢,A) — F;(¢,N) is square integrable.

Now consider the restriction of F;(¢,A) to R* x Z;.  For
Im(A\) > 0, Fj(¢, A, (u,-)) is square integrable on Z;. Hence, we can ex-
pand Fj(¢, A, (u ,)) in terms of the eigensections of A3. Let L3(Z;, E;)
be the subspace of L?*(Z;, E;), which is spanned by all L2 elgensectlons
of A3. In the orthogonal complement of ker A; in L3(Z;, E;), we pick
an orthonormal basis {i;}re; consisting of eigensections of A3 with
corresponding eigenvalues A, k& € I. Furthermore, let {¢};,cy be an
orthonormal basis of L*(Y,S) consisting of eigensections of D% with
eigenvalues 0 < p; < pp < -+ — 0. For each ! € N, let E;(¢;, A) be the.
generalized eigensection of A? associated with ¢; (cf. [16, §4]). Using
the fact that (A — A\?)F;(¢,A) = 0, we obtain the following expansion
of Fj(¢, A) on R+ X Z]

Fi(, A, (u,2)) = e7¢(2) + *(C;(N)9)(2)
(6.6) + 3 ar(N) e Vg (2)

kel

+Z/ b\ A) e VRS By A, 2) dy(A).

Here C;()) : ker A; — ker A; is a linear operator which is a meromorphic
function of A € Q. We call C;()) “scattering matrix”. The measure d7
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is given by

VA® —
2rA
The convergence of the series and integrals on the right-hand side of (6.6)

is understood in the L? sense. Moreover, the expansion (6.6) holds for
all A € 2. We define the constant term Fjo(¢, A) € C*°(R* x Z;, E) of

Fj(¢, ) by

dr,(A) = dA.

Fio($,X, (uj, %)) = e ™ ¢(2;) + €™ (C;(N) ) (%),
(6.7)
('U.j,Zj) e R x Zj.

Suppose that |A\| < 1/2min{p;, A;}. Let m > 1. Using (6.6), we get

I (A)™F3 (¢, X, () |17
_ E |ak |2 —2Re(\/z\k—/\2)u Aim

kel

+ E/ |bl(A7A)l2 e—2Re(\/7\_"T/\7)u Adm di(A)
SCI e~ cu

We observe that the injectivity radius of Z; has a positive lower bound
and all covariant derivatives of the curvature tensor of E are uniformly
bounded on Z;. Hence, the norm of the Sobolev space H™(Z;, E;)
is equivalent to the norm || (I + A%)™/?¢ ||, and the Sobolev embed-
ding theorem holds [9]. This implies that (6.6) is pointwise convergent.
Moreover, by the Sobolev embedding theorem we get

ZS;I;) [Fi (¢, A, (u,2)) — {e=Pv ¢(z) + e**(C;(N)¢) (2)}| < Cee,

1
(6.8) Al < 5 min{p1, A}

Next consider the restriction of F;(¢, A) to R* x Z;, I # j. We shall now
expand Fj (¢, A, (u;,-)) in terms of the eigensections of A}. Let L3(Z;, E;)
be the subspace of L?(Z,, E;), which is spanned by all eigensections of
A?. Let {¥,}pes be an orthonormal basis of L3(Z;, E;) consisting of
eigensections of A7 and denote the corresponding eigenvalues by v,
p € J. Let {¢r}ren and 0 < py < py < --- = 00 be as above and let
E;(¢x, A) be the generalized eigensection of A; associated with ¢ (cf.
[16, 84]). Suppose that Im()\) > 0. Then by Theorem 6.5, F;($,\) —
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[iFjo(¢,A) is square integrable. Therefore on Rt x Z;, we may write

Fi(¢, ) as
Fi(, A, (ur, 21)) = fiF0(, M) (wr, 21) + Y o (wi, A) (1)

peJ

(6.9) + Z ﬁk Uk, A, A) Ei(¢r, A, 21) dri(A).

k=1 Y Mk

Again, the convergence of the series and integrals has to be understood
in the L? sense. As functions of u, both a, and f; satisfy certain
differential equations which we describe now. First note that on Z;, the
section (A — A?)(f;F;0(é, A))(u,-) is square integrable for each u € R*.
Let

(6'10) gp(u’ A) = <(A - ’\2) (ijj,O((ﬁa ’\)) (u, ), ¢P>'

To proceed further, we need to know the asymptotic behaviour of g,(ul)
as u — co. By definition, we have

(A—‘Az) (ijj,0(¢a )‘)) (ula Uyj, y)
(6.11)
= &1 (uy) e~ P(ur,y) + &aluy) e (Cj(A)fﬁ) (u,y),

where supp¢; C [1,2], j = 1,2. Since ¢ is square integrable on Z; and
satisfies A;¢ = 0, we can expand ¢ on R* XY C Z; in terms of the
eigensections ¢ of D}. Using that A} = —9°/0ui + D}, on Rt XY, we
obtain the following expansion

[o <]

(612) ul, Z P ¢ )

A similar expansion holds for C;(\)¢. Moreover, the eigensections 1,
have also an expansion of this type on R* xY C Z;:

(6.13) Yo(us,y) = Y dme VEmTY g (y).

Bm>Vp

Using (6.10) - (6.13), we get the estimate

- e~ VEIu/2 =
(6.14) lgp(u,A)| < C e~V 2, v, > 0;

which holds uniformly for ) in a compact subset of C.
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Since (A —A2?)F;(¢,A) =0, (6.9) implies that the functions a, satisfy
the following differential equation:

(6.15) ap(u, A) = (A — 1) a,(u, A) + gp(u, A).

d 2

Let 11 > 0 be the smallest positive eigenvalue of A? and put
1 .

= é‘ mln{,u,l, Vl}.

Let v, > 0 and suppose that |A| < 4. In view of (6.14), the general
solution of (6.15) has the form

up-A u
ap(u, A) 2\/;—:7\7 / Ve g (v,0) d
uP—A u -
(6.16) 2\/m/ V=AY g (v, A) dv
r

+ () e VIV 4 ogp(N) eV

The branch of the square root has been chosen such that
Re(y/v, — A?) > 0 for A as above. Since «, is square integrable as
a function of u, we get c,o(A\) = 0. Hence, for each v, > 0, there exists
Cp > 0 such that

lap(u, N)| < Cpe™VP¥, uwe RN N <4,

and 3° 7 |Cpl* < oo
Now assume that v, = 0. Then for |A] < 4, the general solution of
(6.15) is given by

ap(u, A) =d,(\) e

e gy (v, A) dv
0

2

—iAu o] N
(6.17) + 1 5 ). e g, (v, A) dv.
Put -

SN =d0) + o5 [ e g0 .

Then (6.17) can be rewritten as

. ei)\u o0 .

ap(u, A) =c,(A) e — i ) e g, (v, A) dv

—iAu o]
(6.18) +i 62/\ / e g, (v, ) do.
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By (6.14) we have
(6.19) lop(u, X) — (M) e < Cpe™™, ueRY, | <4,

for some constant C, > 0. The coefficients Si(u, A, A) in (6.9) can be
determined in a similar way. If we proceed as above and use the Sobolev
embedding theorem, we get

félg |F] (¢5 )‘7 (ua Z)) - ij’j,O (¢a )‘a (u" Z))
(6.20) = Y (N (2)e| < Ce™™, ueR, A <,

vpy=0

for certain constants C,c > 0. Combined with (6.8), this estimate
implies that ¢,(A\) = 0 for v, = 0 and Im(A) < 0. But ¢,(}) is a
meromorphic function of A and therefore vanishes identically. Putting
together (6.8) and (6.20), we can summarize our results by

Theorem 6.21. Suppose that ker Dy = 0. Let

60 = 1/2min{/,l,1,V1,A1}.

Let x; be the characteristic function of R* x Z; C X, and for ¢ € ker A,
let F; (¢, A) be the constant term of F;(¢, ), defined by (6.7). For each
¢ € ker A;, the restriction of the generalized eigensection F;(¢, ) to
Rt x Z, C X, 1 =1,2, satisfies

Sug |E1(¢a)‘v (’U,,Z)) - Xij,0(¢7 )‘a (’U,,Z))l < Ce—cu-» u € R+7 I)‘I < (50,
zeZy

for some constants C,c > 0.

We can now proceed in essentially the same way as in [17, §7] and
derive the basic properties satisfied by the generalized eigensections.
Suppose that |A| < §, and Im()) < 0. Then from the estimations proved
above it follows that F;(¢,A) — f;h;(C;(A)¢, —)) is square integrable.
Put u(\) = F;(C;(A\)¢, —A) — F;(¢, ) and assume that Im(A) < 0 and
|A| < 8. Then u()) is square integrable and satisfies (A — A%)u(\) = 0.
Since A is essentially self-adjoint, u(\) = 0, ie., F;(C;(A\)¢,—A) =
F;(¢,A). Comparing both sides of expansion (6.6) yields

Theorem 6.22. Let j = 1,2. The generalized eigensections F;(¢$, ),
¢ € ker A;, satisfy the following functional equations

(6.23)  F;(C;(M)¢, =) = F;($,)), C;(NC;(=2) =1d, || <do-
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Given T > 0, let xr be the characteristic function of
[T,00) x Z; C X, where [T, 00) x Z; is regarded as a submanifold with
respect to the decomposition (1.3). Put

(624) FJT(¢7 A) = Fj (¢7 A) - XTFj 0(¢a A)a

where Fjo(¢, ) is defined by (6.7). If A € Q, then F (¢, ) is square
integrable by Theorem 6.21, and the inner product of the FT’s can be
computed as follows. Let 4) 1 € ker A; and let A, )" € Q be such that
X # £ ). Integrating by parts gives

(FT(6,\), F (¢, A'))
= (3 = X)TH{(AF (&, 0), F] (1, X))

— (FT(¢,7), AFT (3,X)) }

(6.25) _

= T {e O ) — STOTG N8, C, ) )
(=T 9,0,009) — TG, (06,8) ).

n %
A+ N

Put T = 0, assume that 0 # A € R, |A\| < &, and let X' — A. Then the
left-hand side stays bounded, and therefore the right-hand side must
stay bounded as well. This fact implies that C;(r) is unitary for r € R,
0 < |r] < 8. For r = 0, the functional equation gives C;(0)*> =Id.
Hence, C;(r) is regular for r € (—dy,dp). Now let 0 # r,r’ € R and sup-
pose that |r|,|r'| < § and r # r'. Let r — ' and apply the functional
equation (6.23). Then (6.25) leads to

(BT (¢7), T () = 29,9 — i(C5(=r) (5-0,(r)) )

]

(6.26) + 5 {6 ) — SO (M), ],
reR, 0<|r| < d.

Since Cj(r) is regular on (—do,d0) — {0}, F;(¢, ) is also regular on
(=60, %). Using C;(0)? =Id, one may derive a similar formula for r = 0.
Summarizing, we have proved

Proposition 6.27. The scattering matriz C;(A), j = 1,2, is unitary
for X\ € (=00,80). Both C;(\) and F;(¢, ), ¢ € ker A;, have no poles
on (—(50, (50)

We can now use the generalized eigensections F;(¢,7), r € (—d,d0),
to describe the continuous spectrum of A near zero. Let 0 < § < &
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and let ¢ € ker A;. By Proposition 6.27, F;(¢, A} is square integrable
as function of X € [0,4d]. Let f € L*([0,d]) and put

é
W;s(f) = \/—127 /O Fy(¢,r) f(r)dr.

Lemma 6.28. 1) For all f € L*([0,4]), W, 4(f) belongs to L*(X, E),
and for any f,g € L*([0,4]), ¢,% € ker A;, the inner product of W; s(f)
and W; 4 (g) is given by

<Wj,¢(f)’ Wj:’lﬂ(g)) = <f7 g) (dmﬂ)

2) Let L be the bounded operator in L*([0,4)), which is defined by
Lf(r) =r%f(r). Then we have

(A—2)7"W, 4(f) =W, s((L—2)""f), z€C—R", feL*[0,d]).
3) For all ¢ € ker Ay, ¢ € ker Ay and f,g € L*([0,6]), we have
(Wh,6(f), Wau(g)) = 0.

Proof. Let T > 0 and put

1 1
wr :——/F.T ,r) f(r)dr,
J>¢(f) /271' o 7 (QS )f( )
where F (¢, \) is defined by (6.24). Since F;'(¢, A) is square integrable,
W, (f) is also square integrable. Using the inner product formula (6.25)
and the Riemann-Lebesgue lemma, we get

é
Jim | WE) P= [ )P ar o1

Applying Lebesgue’s theorem, it follows that W; 4(f) is square inte-
grable. The inner product formula can be derived in the same way. This
proves 1). Since AF;(¢$,\) = N F;(¢, \), we get 2). By Theorem 6.21,
we obtain

Jim (F{(9, X), FY (4, ) =0,

which implies 3). q.e.d.
Let m; = dim(ker A;). Let 4,1, ...,1;m, be an orthonormal basis for
ker A;. Then we define the operator

W, : @) LA(0,6]) — I*(X, B)

k=1 :
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by

mj 1 §
Wi =3 5= || Bitbir) ) dr

By Lemma 6.28, W, is an isometry onto a closed subspace H} C L*(X, E)
and H? is orthogonal to H3. Moreover, we have

(6.29) WiW;=1d and W,W; =P},

where P? is the orthogonal projection of L*(X, E) onto #J. Lemma 6.28
implies that #¢ is an invariant subspace for A. Let A denote the
restriction of A to Hj. Let a € C®(R) be such that a(u) = 1 for
[uf < /2 and a(u) = 0 for |u| > 4. From (6.29) it follows that the
kernel of a(A?) exp(—tA?) is given by

(6.30)

i1 [™ 2 ,
K (z,a',t) = Z% /o a(A?) e Fj(thix, A, ) ® Fj(thjr, A, z') d.

We extend a(A?) exp(—tA?Y), 7 = 1,2, to operators in L*(X, E), and
put them equal to zero in the orthogonal complement of ’H,;’

Lemma 6.31. Let 0 < <y and let o € C°(R) be as above. For
3 =1,2 and t > 0, the operators

a(Af-) exp(—tAf-) — a(A; p) exp(—tA; p)

are Hilbert—Schmidt.

Proof. Let F(t;k,A) be defined by (6.24) where T' = 0. Then we
may write

Fi($ik, A\, 2) ® Fj (i, A, ') = Fj (%, A, ) @ F} (e, A, 2')

+ FP (%, A, 2) @ Fo(ie, A\ z') + Fjo(ie, A z) ® Fiothie, A, 2'),
which induces a corresponding decomposition of the kernel (6.30), say

K7(t) = K7, (t) + K5 (t) + K75(t).

Now consider the individual kernels. Let ¢ € L?(X,E). Then from
Lemma, 6.28, 1) it follows that

| K310 1= Z et

Hence, the Hilbert-Schmidt norm ||| K3, (¢) ||| of K,(t) is finite and
given by

[RSRONE z [T a0 1 BN IP

(F° (s, ), )lsz.
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In the same way one can show that Kf,(¢) has finite Hilbert-Schmidt
norm. Thus, it is sufficient to prove that K3(t) — (A, p) exp(—t4; p)
is a Hllbert Schmidt operator. Since ker Dy = 0, the spectrum of
A; p, restricted to the orthogonal complement of L?(R*) ® ker A; in
L*(R* x Z;,E), is contained in [dy,00). Therefore, the kernel of
a(A; p) exp(—tA; p) is given by

634 2 /0 ™ () e sin(u) sin(0) dA S 5e(2) © B ().

™ k=1

Since C;()) is unitary for A real, we have

ZC Vi ® Ci(N\)hse = sz ® Pix-

From (6.7), (6.33) and (6.34) it follows that the kernel of
Kﬁs(t) — a(Aj,p) exp(—tA; p) equals

1 * —tA% _ix(utv b
o /0 a(A?)e™ e (O (A i — Yin) ® Pgn dA
1 > 2
-5 / a(/\Z)e—t)\ e~ A ute) Vs @ (Cj(/\)d)jk — d’jk) d\
0

(6.35)
= i /°° a(/\z)e—z)\2 eiMute) (Cj(’\)d’jk _ d’jk) ®‘1,[7]_'kd/\.

27 J_wo

To obtain the equality, we made use of the relation C;(A\)* = C;(—\)
which is a consequence of the functional equation (6.23). Integrating
by parts yields that the right-hand side can be estimated by
Cn(u +v)™" for every N € N. This proves our claim. q.e.d.

If we use Theorem 4.24 together with Lemma 6.31 and proceed as in
the proof of Proposition 6.1, we obtain

Proposition 6.36. Suppose that ker Dy = 0. Let

1
0<d< §min{#1,/\1;1/1}

and let Hi C L2(X E), j = 1,2, be the A-invariant subspaces intro-

duced above. Let A be the restriction of A to the orthogonal complement
of HS & HS in L?(X, E). Then the essential spectrum of A is contained
in [4,00).

This result implies that for the case ker Dy = 0, the generalized
eigensections constructed above give a complete description of the con-
tinuous spectrum of A near zero. From the spectral theorem together
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with Proposition 6.36, it follows that for every p € N, there exists C, > 0
such that

| APe 2 ||< C, P e, ¢ > 0.

Applying Proposition 2.7 and Proposition 2.8, we get

Corollary 6.37. Suppose that ker Dy = 0. Let KJ(z,z',t), j = 1,2,
be defined by (6.30) and let K(z,z',t) be the kernel of exp(—tA). Then
there ezist C,c > 0 such that

2
|D$K(m,m',t) —ZDme(m,w',t)’ <Ce™ forall z,z€X,t>1.

=1

7. The L2-index formula

Let D : C®(X,E) — C*(X,F) be a generalized Dirac operator
satisfying (2.1) ~ (2.4) and suppose that ker D, = 0. Assume that n =
2k, k € N. Then the Clifford bundle E splits into the +1-eigenspaces
E_ of the canonical involution 7, and our goal is to derive a formula for
the L*-index of D, : C°(X,E,) = C~(X, E_). The method that we
shall employ to prove the index theorem is based on the local version of
the McKean-Singer formula. This formula has been used, for example,
by Stern [22], [23] to derive a formula for the L?-index of the signatur
operator on locally symmetric spaces of finite volume.

Let h(z,y) be the kernel of the orthogonal projection of L*(X, E)
onto ker D where, as above, D denotes the unique self-adjoint extension
of D : C°(X,E) - L?(X,E). Recall that by Corollary 2.23, ker D
is finite-dimensional. Let ¢, ..., ¢, be an orthonormal basis of ker D.
Then h is given by

W) = 3 63(0) 0

Let K(z,y,t) be the heat kernel for A = D? which was constructed in
§4. Then we have the following result.
Lemma 7.1. We have pointwise convergence of kernels

Jim K(z,y,t) = h(z,y).

The convergence is uniform in the C™ topology on compact subsets of
X xX.

Proof. We may follow essentially the proof of Lemma 6.3 in [7].
For the sake of completeness we include details. Pick a parametrix P
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for exp(—tA) which is compactly supported in space and time, that is,
P(z,y,t) =0ifd(z,y) >e>0o0rt >t >0. Set

Io}
Pl(m7y7t) = (a + Am)P(xay’t)'

By Duhamel’s principle we can write

t
K(@y,1) = P@,y,t) — [ 920 Py(s)d.
0
As y varies in a compact subset © of X the functions P, (z,y,t) (viewed,
for each s, as function of z) vary in a compact subset of L?>(X, E). Thus,
using the spectral theorem and the fact that P(t) is compactly supported
in time, we have pointwise convergence as ¢ — 00!

(7.2) K(z,y,t) = —/OOO/X Wz, 2)P(z,y,s)dz ds.

Since X has uniformly bounded C* geometry for all k¥ € N (see [7] for
the definition), it follows that the convergence is uniformly C*> as y
varies over © and z varies over X. The right-hand side of (7.2) can be
written as

e )
—hm/e /Xh(m,z)(a+AZ)P(z,y,s)dzds

=0
=— lim/ / h(m,z)gP(z,y,s) dzds
€ X 0Os

e—0
= 21_1;% ; h(m,z)P(z,y,e)

= h(z,y). g.e.d.

Next recall the local index theorem for generalized Dirac operators
[10]. Note that our Dirac operators are compatible. Therefore, we can
apply Theorem 5 of [10]. Let wp(z) be the local index density for D,.
Then we have as t — 0

(7.3) tr(rK(z,z,t)) dz = wp(z) + O(%).

The constant occurring in O(t) is uniformly bounded on compact sub-
sets.

Now consider the compact submanifolds X7, T' > 0, of X defined by
(1.6). Using Lemma 7.1 and (7.3), we obtain

/ tr(rh(z,z)) dz = lim tr(7K (z,z,t)) dz
X t

— 00 Xr

(7.4). = wD—i—/ / 2tr('rK(ac,ac,t))d:lcdt.
Xr 0o Jxr Ot
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If the spectrum of A has a gap at 0, then the ¢{-integral is absolutely
convergent. In the following we shall prove that this holds in general.

As T — oo, the left-hand side of (7.4) converges to the L?*~index of
D, . Now consider the right-hand side. From Proposition 4.20 it follows
that in (7.3) we may replace K by the parametrix Q and we still get the
same asymptotic expansion as ¢ — 0. In particular, wp is determined by
Q. Since 7; commutes with —8%/du? + A?, 7 = 1,2, and anticommutes
with 7, it follows that wp = 0 on R* x Z;, 1 = 1,2. Hence the limit as
T — oo of the double integral on the right-hand side of (7.4) exists and
we have

(7.5) L*IndD, = /X wp +T1i_{£10/0 /XT g—t-tr(TK(z,z,t)) dz dt.
To treat the double integral we use the following lemma which is the
local version of the McKean—Singer formula.

Lemma 7.6. Let D : C*(X,E) - C>(X, E) be a generalized Dirac
operator and let 7 : E — E be a bundle isomorphism which satisfies
72 =1Id and 7D = —Dr. Let e=*P*(z,y) and De~*P*(z,y) be the kernels
of e7tD* and De~*P*, respectively. Then

0]

5 tr(re P’ (z,z)) = div Vp,

where Vp is the vector field on X whose j-th component with respect to

an orthonormal moving frame {e;}?_, is given by

1 2
5 tr(e; - 7De P (z, z)).

Proof. We have

%tr(T e (g, w)) = tr(T %e-wz (‘”’z))

= tr(r %e“wz(m, ¥)le=y )

= —tr(rD2 P (2,y)|omy)

(Dz"'Dz e™t? (z, y)|z=y)

ltr
)

1 _

+ 2 tr(DyTD:v et (33,?/)‘1:11)'

Choose normal coordinates at z, and pick a local frame field {e;}i,

such that (V,e;)(z0) = 0 and e;(zo) = %]zmo. Then the right-hand
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side can be rewritten as

n

1 2
-2—Ztr(ei(x) “Ve)7Ds € Pz, Y)|omy)

i=1
n

1 _in2
+ 5 Ztr(ez(y) . Ve,.(y)TDz € tp (-'an)lz=y)

i=1
=- Ztr e@ei() - 7D e (,3))
—tD?
+ 3 ; tr (Vel.(z) (ei(x) - 7D, e (z, y)!z:y))

1 & 2
+ 5 Z tr (Ve,-(y) (ei(y) - 7Dg e™P (l‘,y)lz:y))'
=1

The first sum on the right-hand side vanishes at £ = z,, and the re-
maining two terms, evaluated at x = zo, give

— Z axt tr TD e_tD ((E y)) |:1;0=:z:=y

—tD?
+3 ; B, tr(e;(y)7D e " (z,y)) |10=z=y

= —tD? T
=3 Z 52, tr(e;(z)T e (:z;,.'l:))|z0=z = div Vp(zo),
where Vp is the vector field which is given by
Ztr ei(@)TD e (z,))ei(2).

g.e.d.

The corresponding statement for a power of the resolvent has been

used by Stern in [22], [23]. We now apply Lemma 7.6 to (7.5). Let e,
be the outward unit normal vector to the smooth part of 9 Xs. Then

L*Ind D,
(7.7) =/ wp + lim = / / tr(en . TDe”‘tD2(:E,:E)) dz dt.
2Jo Joxr

T—oo

To compute the limit, we split the t-integral as follows:

o0 vT oo
=L+
0 0 vT
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Put
1 oo
(7.8) R(T) = —/ / tr(e, - TDe P’ (z,z)) dzdt.
2 JyT Jox s

The convergence of this integral follows from the manipulations above.
In the following we shall see that the integral is indeed absolutely con-
vergent. Moreover recall that

0Xr =({T} x Zy 1) U({T} x Zo.1),

and that «; is the outward unit normal vector field to Z;,7 = 1, 2. Hence,
the double integral on the right-hand side of (7.7) can be written as

% /Ow/T/Z t;r('yl’r_De—tD2 ((T, 2), (T, zl))) dz dt
)

(7.9
1 (VT 2
+ ‘2‘ / / tr(')'z’rDe_tD ((T, Zz), (T, Zz))) d22 dt + R(T),
0 Za, T

and we have to investigate the limit as T — oo of the individual terms.
We begin with the first two terms.

As above, let A; be the self-adjoint extension of the Dirac operator
A; : C®(Z;,E;) = C®(Z;, E;) defined by (2.1). Since dim X is even,
we have

(7.10) TA; = A7 and vyt =-77v, i=12.

Let E; = E} & E; be the decomposition into the +1-eigenspaces of
7. By (7.10), A; and +; take the following form with respect to this
decomposition:

Af 0 (0 47
In particular, on Rt x Z; we have
3]
Dy =t (5 + A7),
5ui

and AT is the Dirac operator associated with the Clifford bundle EF.
Let AF be the self-adjoint extension of AF. Since A is a compatible
Dirac operator [10], from [16, §6] it follows that the eta invariant of A7
can be defined by

(7.12) n(0,A}) = %/ t_1/2/ tr(A;"e‘t(A?)z(z,z)) dz dt.
0 Z;



158 WERNER MULLER

Proposition 7.13. We have

\/T 2
lim / / tI‘(’)’ﬂ'D e 2" (T, 2:), (T, z,))) dz; dt = (0, A}),
Zi 7

T—o0 0
i=1,2.

Proof. Let Q(z,y,t) be the parametrix defined by (4.7). It follows
from Proposition 4.20 that

{tx(3erDeP* (T, 20), (T, 22)))

Z;i 7

- tr(’)’iTDIQ((T, ), (T, zi),t)) } dz dt

\/T 2
< G, Vol(Zi.z) / ecte—T* /1 gt
0

< (}'2T‘°’/2ec‘ﬁe'°T3/2 —0
as T' — oo. Hence we may replace the heat kernel by the parametrix Q.
Now consider the integral over Z; r. Suppose that T > 1. Since the

supports of ¢, and 1, are contained in X, the term ¢oKot)o in (4.7)
makes no contribution. Hence, using the definition of @), we get

/Z] . tr(’YlTDIQ((T,z), (T,;)7t)) dz

/ r(rAre” (2 ,2)) dzdt
VAR

\/471'
b [ atandds [ () (R (1,00, (20,0
1 2141
— ~ea T K,y t dy.
Vant oy )}l:f:;) Y

Here we have used that ¢, and 4 have disjoint support. By (3.5) of
[16], the second integral on the right-hand side can be estimated by
T e—°T*/tet, Next observe that by (7.11), we have

tr(rA; e (2, 2)) = tr{A} e 84 (2, 2)) — tr(A] e 44D (2, 2)).
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Moreover, using (2.2) and (7.11), we get A7 = —(v7 ) *Af vy . Thus

VT
/0 /Zthr(’Yl 'TD:,;Q((T,z),(T,z),t)) dz dt
(1.14)

1 vT +12 3/4
= ﬁ/ t’1/2/ tr(Afe ") (2,2)) dzdt + O(e T ).
0 AR

We are now exactly in the situation of Proposition 7.6 of [16], which
implies that the right-hand side of (7.14) tends to 1(0,.Af) as T — co.
The same holds for ¢ = 2. q.e.d.

We are left with the third term, R(T'), in (7.9). First, we shall derive
two further properties of the scattering matrix.

Lemma 7.15. Let j = 1,2. Then the scattering matriz C;(\) satis-
fies

7C;(A) = C;(N)7, 7Ci(A) = =C;(N)y;, A€

Proof. Let ¢ € ker A; and suppose that Im(A) > 0. Then it
follows from Theorem 6.5 that 7F;(¢,A) — F;(7¢,A) and DF;(¢, A) +
iAF;(v;4, A) are square integrable eigensections of A with eigenvalue \?
and both therefore must be zero. Hence, we get

(7.16) TF;(¢,A\) = F;(t$,)) and DF;($, ) = —iAFj(v;¢, ),

which hold for all A € 2. Comparing the constant terms of both sides
of these equations, the desired relations follow. q.e.d.
Given ¢ € ker A;, put

I;($, A, z) = (v; - (DF;)($, \, ), (¢, A, )} -

Lemma 7.17. Let ¢ € ker A; and suppose that C;(0)¢ = *+¢. Then
for every compact subset U C X, there exists Cy > 0 such that

lIJ((/)aAarI;)l < CU)\2, })\| < 50, z e U

Proof. First note that by (7.16), we have

(718) Ij(d)? )‘a iL‘) = —iA<’Yij(T’Yj¢7 )‘7 $), Fj ((/): )‘, $)>

Let 1 € ker A; and suppose that C;(0)1) = —1. Then the functional
equation (6.23) implies that F;(+,0) = 0. Furthermore, if ¢ satisfies
C;(0)¢p = =¢, then by Lemma 7.15, we get C;(0)(7y;¢) = F7v;¢.
Hence, under the given assumption, it follows that either F;(¢,0) = 0
or F;(7v;$,0) = 0. Therefore, by (7.18), we get L;(¢, A, z) = O()\?),
uniformly on compact subsets. g.e.d.
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Let ¢ € ker A; be an eigenvector of C;(0). Then Lemma 7.17 yields
that

(7.19)

[ L@@ a|<o@mn, N<b,

7

for some constant C'(T") > 0 depending on T'. By the functional equation
(6.23), we have C;(0)? =Id. Thus C;(0) is a symmetric operator with
eigenvalues equal to +1 or —1. Let %;1, ..., %;m; be an orthonormal basis
for ker A, consisting of eigenvectors of C;(0), i.e., C;(0)y;r = +vj.
From Corollary 6.37 and (6.30), it follows that as T — oo,

2 my

:Z%ZZ/ / —t*z/ (Wi, A, (T, 2;)) dz; d) dt
(7.20) +]O(e 7,

We note that by (7.19), each of the integrals is absolutely convergent.
Let F;o(¢,A) be the constant term of F;(¢4, \), defined by (6.7), and
put

Ij,0(¢7 )‘7 .'E) = <7] ) T(DF]',D)(¢7 )‘a "B)a -Fj,O (¢a )‘$ :E))

Consider the expansion (6.6). If ¢ € ker.A; is such that F;(¢,0) =0
then all coefficients in this expansion must vanish, i.e., ax(0) =0, k € I,
and 9,(0,A) = 0, ! € N. Now suppose that C;(0)¢ = +¢. As above,
from the functional equation (6.23) and Lemma 7.15 it follows that
either F;(¢,0) = 0 or F;(v;¢,0) = 0. Hence, if we proceed as in the
proof of (6.8), we may deduce that there exist C,c > 0 such that

sup II] (¢))‘7 (U,Z)) - Ij,0(¢a )‘: (uaz))’ < C)\Ze_cu’ I)‘l < 50, u € R*.

zEZ;

Therefore, in (7.20) we can replace I;(¢, ) by I;o(#,A), and the re-
sulting expression equals R(T) up to an exponentially small term in
T as T — oo. Next observe that by (6.12), each ¢ € ker A; satisfies
lp(u,y)] < C exp(—+/p1u), y € Y, for some constant C > 0. Using
(6.7), this estimate implies

‘/ Ij,O (¢a )‘a (Ta Z)) dz — / Ij,O (¢1 )‘, (T, z)) dz| < C)‘ZTe_CT’
Z; Z; T
A} < do.
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Furthermore, by (6.7) and (2.1), we get

/ Ij,O (¢> Aa (T7 Z)) dZ
Z;

= —ix{(7¢,¢) — (1C;(N) @, C;(A) @) + e~ 2T (7, C;(\)¢)
(7.21)
- ezi'\T(TCj(A)QS, ¢>}-

Applying Lemma 7.15 and using the fact that C;()) is unitary for
A € (=0p,0), we get

<T¢a ¢> = (TCJ' (A)QS: Cj (A)QS)’ ¢ € ker 'Aja

i.e., the first two terms on the right-hand side of (7.21) cancel. The
remaining terms on the right of (7.21) are equal to

(73 — &) (¢, 7C;(N)¢) + €279, 7(C;(N) — C5(=X)) ).
Putting these remarks together, we get
2 )
1 _ 2 in(2AT
R(T):_;;{/O. e VT A Tr (G5 (V) sm(/\ ) ax
J=

+/6 e~ VT A2 2iAT Tr(rC;(A) _/\TT(TCJ'(—A)) d/\} + O(e=<T).
0

The first integral can be treated as follows:

6 _ 2 sin{2)\T
(e mroy ) D

6/T1/8 .
- / VTN Te(rC; (M)
0

dA

sin(2AT")
A
=Te(r0y(0)) [ e SEAD)

Applying Fourier’s integral formula, we get

dx + 0™

dx + O(5(e™ ™).

lim R(T) =~ Tr(rCy(0)) — 3 Te(rCy(0).

T—o00

Now observe that
(7.22) ker A; = ker AT @ker A7, j=1,2,
is the decomposition of ker A; into the +1-eigenspaces of

T :ker A; — ker A;.
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By Lemma 7.15, C;()) preserves the decomposition (7.22). Let Ci(})
be the restriction of C;()) to ker AF. Then

Tr(7C;(0)) = Tr(C;(0)) — Tr(C5(0)-

By Lemma 7.15, we know that ;C;(0) = —C;(0);. Since v;7 = —77;,
we obtain

(7.23) C; (0) = —y;CH0)y; .
Hence, as the final result we have
. 1 1
Jim R(T) = —2 Tr(C{(0)) - 5 Te(C5 (0).

We note that C;(0) : ker A} — ker A}, |A| < &, may be regarded
as scattering matrix associated with the continuous spectrum of D_D_
near zero. Indeed, let ¢ € ker A}. Then F;(¢, A) belongs to C*(X, E*)
and hence is a generalized eigenfunction for D_D,. The scattering
operator C; (}) is determined by the constant term of F;(¢, ).

Summarizing our results, we have proved Theorem 0.1.

According to Theorem 0.1 of {16}, the eta invariant n(0, A}) can also
be described in terms of the restriction of Aj to the compact submani-

fold M; C Z;. On Rt x Y C Z;, A has the form

0
A;_ = Uj(_a’v—j + Bj),

where v; is the outward normal coordinate, o; : Ej|Y — E;|Y is
a bundle isomorphism and B; : C®(Y,E/|Y) — C®(Y,E]|Y) is a
generalized Dirac operator on Y. By (2.3), 0; and B; can be expressed
in terms of v, 7, and Dy as follows: o1 = (1.m)", 02 = (m7)",
B, = (Dyv.)t and By = (Dy7;)*, where “+” denotes the restriction
of the corresponding operator to the +1-eigenspace of 7. Let P; be the
negative spectral projection with respect to B;. Using P;, we impose
spectral boundary conditions on OM;. More precisely, put

HY(M;, E}; Py) = {@ € H (M}, E}') | P;(p|l0M;) = 0},
and let
(Aj_)P, Hl(M],E;_, .P]) — Lz(M],EJ—)

be defined by (A})p,¢ = AT . Since ker B; = 0, (A} )p, is self-adjoint.
Moreover, (Af)p, has pure point spectrum, and the eta invariant of
(A})p,;, which we denote by n(A]; P;), can be defined in the same way
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as in the closed case. Since Aj is a compatible operator of Dirac type,
it follows from Corollary 1.29 of [16] that

1 0o + 2
. . - —t{(AT)p,
(724) ’I](Aj_, P]) = ﬁ ‘/0 t 1/2 It ((Aj_)pje t( i J) ) dt.

Thus by Theorem 0.1 of [16], we have
70, A7) = n(4], F;).

7

The term Tr(Cj (0)) has also an alternative description analogous to
[1]. As observed above, the scattering matrix satisfies C;(0)? =Id. Let
& be the +1-eigenspaces of C;(0). Then

ker.Aj = 8;_ @ Lc:j_.

Let ¢ € £ and put ¢ = 1F;(¢,0). Then we have

2D<10 = DF](¢a A)')\:O = _2AFJ(7¢7 A)|)\=O =0.

Let x; be the characteristic function of Rt x Z; C X. It follows from
Theorem 6.21 that

w= X](ﬁ + ¢‘,
where ¢ € L*(X, E). In analogy with [1, p.58], we call ¢ an extended
L?-solution of D with limiting value ¢ € ker A;. Let £; C ker A; be
the subspace consisting of all limiting values of extended L?-solutions
of D.

Lemma 7.25. We have £; =&, j =1,2.

Proof.  Above we have seen that £ C £;. To prove the reverse
inclusion, let ¢ € L£; and suppose that ¢ € C*(X, E) is an extended
L2-solution of D with limiting value ¢. Write ¢ = ¢, + ¢_ where
C;(0)p+ = ¢+. Put & = LF;(y;¢-,0). Then & satisfies D = 0 and
5 — Xj ')’j(,l')_ € Lz(X,E) Let Xj,T = X - ((T, OO) X Z]) Applylng
Green’s formula, we get

o=/ (Dpla),£(e)) da
= [ (@ Ez ) e+ [ lolo), Dele)) da

= [ vi¢- | +O0(e™*7).
Hence ¢_ = 0. q.e.d.
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The space £; decomposes according to the decomposition (7.22). Let
LF C ker A7 be the subspace of all limiting values of extended L*-
solutions of D,. Then we have

Li=LFoL; j=1,2
Lemma 7.26. Let hf =dim L5, j =1,2. Then
Te(Cf(0)) =hf — h;, j=12

Proof. Using Lemma 7.25, we get
LF =LiNker AF =& Nker A7, j = 1,2.

Since C{(0) is the restriction of C;(0) to ker A7, it follows that
h¥ = dimker(C;"(0) — Id). Moreover, (7.23) implies that
dim ker(C; (0) — Id) = dim ker(C; (0) + Id). Putting everything to-
gether, we obtain

Tr(C;(0)) =dim ker(C; (0) — 1d) — dim ker(C; (0) + 1d)
=h} — hj,j=1,2. qe.d.

Finally observe that by Proposition 3.11 of [1], we have ker A;' =
ker(A})p;, j = 1,2. We can now rewrite the index formula (0.10) in the
following way:

(7.27)

1 : - -
L*-Ind D, = /X wp, ~ 5 E {n(A]; P;) + dim(ker(A)p, } + h{ + h3.
[+} =1

Theorem 0.2 follows directly from (7.27). There is an obvious extension
of this result to the case of several corners of codimension two.

8. A splitting formula for eta invariants

In this section we apply our index formula to derive a splitting formula
for eta invariants. -

Let X be a 2k-dimensional compact oriented Riemannian manifold
with C* boundary M. Let Z — X be a compact oriented hypersurface
with C* boundary Y such that Z intersects the boundary of X transver-
sally in Y and devides X in two submanifolds X; and X, (see Fig.4). We
assume that the metric on X is a product in a neighborhood (—¢, 0] x M
of the boundary and in a tubular neighborhood (—¢,¢) X Z of Z. Let E
be a Clifford bundle over X and assume that the metric and the connec- -
tion of E are products near M and Z. Let D: C*(X,E) = C>*(X, E)
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FIGURE 4. Cutting X in two pieces X; and X,.

be the associated Dirac operator, and denote the restriction of D to X;
by D;: COO(X,;,E,') — COO(X,;,E.,'), 1= 1,2 Then D, and D, are Dirac
operators which satisfy (2.1)-(2.4). Let D* and Df, i = 1,2, be the
restriction of D and D;, to E* and E}, respectively. Near the boundary
and the hypersurface we have

(8.1) Dt =~ (8%+A), on (—¢,0] x M,
1

(8.2) Dt =+, (5%— + DZ), on (—€,€)%x Z,
2

where A and D, are the induced Dirac operators on M and Z, re-
spectively, v, denotes Clifford multiplication by the inward unit nor-
mal vector field to M, and 7y, denotes Clifford multiplication by the
unit normal vector field to Z, which points into X;. Furthermore, on
(—¢,0} X (—¢e,e) xY, D takes the form

0 0
(8.3) D= ’715‘171 + ’Yza—u2 + Dy,

where Dy : C=(Y,E|Y) — C>=(Y, E|Y) is a Dirac operator on Y, and
the commutation ‘relations (2.4) hold. We assume that ker Dy = 0.
From (8.3) it follows that

5 .
Dz =0, (8_11,1 + Bl) on (—'E,O] XY,
and '

A= ”2(6%2 + Bz) on (—g,€) xY,

where B; and B, are the restrictions to E*|Y of —y,Dy and —v, Dy,
respectively. In particular, the assumption ker Dy = 0 implies that
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ker B; = 0,1 = 1,2. Let P* (resp. P~) be the positive (resp. negative)
spectral projection for B,, and let P be the negative spectral projection
for B;. Finally, let A; be the restriction of A to M;, i = 1,2. If we apply
our index formula of Theorem 0.2 to Dj, then we get

Ind D} =/ wy — %{n(Al,P') + dimker(4;)p-}

X1

(8.4) _ %{n(DZ,P) + dimker(Dz)p),

Ind D} =/ wy — é—{n(Az,P*) + dimker(A4;)p+}

(85) + %{T](Dz,P) -+ dimkel‘(Dz)p},

where w; is the Atiyah—Singer index density of D}, and (4;)p-, (As)p+
and (Dz)p are the self-adjoint extensions of A;, A; and Dy, respec-
tively, defined by the corresponding spectral projections. On the other
hand, the index theorem of Atiyah, Patodi and Singer [1] applied to X
gives

(8.6) Ind D :/ w — %{n(A) + dimker A},
X

where w is the Atiyah—Singer index density of D*, and Ind D™ is the
index of the APS-boundary value problem. The index formulae suggest
the introduction of the £—invariant

£(A) = %[U(A) + dimker A].

Similarly, we denote by £(A;, P~) and £(A,, PT) the {—invariants for
A; and A, with respect to APS boundary conditions defined by P~ and
P+, respectively. Since w, w; and w, are locally computable, we have

/(.U:/ w1 +/ Wy,
X X1 X2

Hence, if we compare (8.4), (8.5) and (8.6), we obtain
Theorem 8.7. Let the assumptions be as above. Then the following
splitting formula holds for the {—invariants

£(A) =€(A1,P7) + (42, P*) + TndDY
+ IndD;} — Ind D* + dimker(Dz)p.
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Note that the same result holds if X has additional C* boundary
components which are disjoint from the hypersurface Z.

We shall now employ this result to derive a mod Z splitting formula
for the é—invariant. Such formulae were recently proved by various au-
thors [4], [8], [14], [25].

Let M be a closed oriented (2k — 1)-dimensional spin manifold. This
means that M is equipped with a Riemannian metric and a spin struc-
ture is fixed. Let Y — M be a closed oriented hypersurface which
devides M into two pieces M; and M,, that is, M; and M, are subman-
ifolds of M with boundary Y, and M is obtained by gluing M, and M,
along the common boundary Y. We assume that the metric of M is a
product in a tubular neighborhood (—¢,£) X Y of the hypersurface Y.
Let D), be the Dirac operator on M. On (—¢,£) X Y we have

Da =g + Dy),
where « is Clifford multiplication by the unit normal vector field to Y
which points into M,.
We shall now construct two 2k—dimensional manifolds X; and X,
with a corner at Y. Let M;, = M; — ((—¢,0] xY), i = 1,2, and let

X, = ([—£,0] x My.) U ([-¢,0P xY) U ([—¢,0] x M, ),

where the three manifolds are glued together along pieces of their bound-
aries in the following manner: We identify [—¢,0] x OM;, with
{—€}x[—¢,0]xY and [—¢,0] x M, with [—¢,0] x {—e}xY. Then X, is
a manifold with two boundary components which are piecewise smooth.
One component equals M' = M; U M, and the other component equals
M, = M, . Uy M, .. Both boundary components are homeomorphic to
M. The product metrics on [—¢,0] x M; and [—¢,0] x M, coincide on
the common submanifold [—¢,0]* x Y and therefore extend to a metric
on X, in the obvious way. We smooth X. at the corner of M,. The
manifold X/, obtained in this way, is isometric to X, in a neighborhood
of M'. The other boundary component M of X/ is diffeomorphic to
M. Next we glue the cylinder [0, 1] x M to X by identifying {1} x M
and M] by a diffeomorphism. Let X; be the manifold obtained in this
way. Finally, we patch together the product metric on the cylinder and
the given metric on X! to get a smooth metric on X;. Then 0X; is the
disjoint union of M and M’. Moreover, in a neighborhood of M, the
metric of X; is a product, and in a neighborhood of M' the metric has
the structure described in §1 (see Fig.5 below).

Then X; is also a spin manifold and we can pick the spin structure
such that it extends the given spin structures on the boundaries.
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FIGURE 5. The manifold X; with corner Y.

Now let N = M, U (—M,). Then N is a spin manifold, and using the
same construction as above we get a spin manifold X, with boundary
N UN', where N is the smooth boundary component and N’ is home-
omorphic to N with a corner at Y. We glue X; and X, at the corner
along their boundary components M, C M’ and —M,; C N'. In this
way we get a spin manifold X with three smooth boundary components
M, —M and —N. Applying Theorem 8.7, we obtain

Theorem 8.8. Let M be a closed odd—dimensional spin manifold.
Let Y — M be a closed oriented hypersurface which devides M into
two submanifolds M, and M,. We assume that the metric is a product
near Y and that ker Dy = 0. Let P+ (resp. P~) be the positive (resp.
negative) spectral projection of Dy . Furthermore, let Dyr, Dy and Doy,
be the Dirac operators on M, M, and M,, respectively. Then we have

¢(Du) =4(Das,, P7) + &(Dasy, P*) + Ind DY, + Ind DY,
— Ind D} + dimker(Day,)p-,

where DY, D} and D%, are the Dirac operators on half-spinors of X,
X, and X, respectively, (Dyr,)p- denotes the self-adjoint extension of
Dy, with respect to P~, and Ind is defined by (0.11).

A similar result holds for twisted Dirac operators. In particular, we
recover in this way the mod Z splitting formulae of [4], [8], [14], [25] in
the case where the Dirac operator Dy is invertible.

9. An example

In this section we consider the case where X is the product of two
manifolds with cylindrical ends, and the Clifford bundle is the exterior
tensor product of Clifford bundles over the factors. Then we compare
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our index formula with the result obtained by using the product struc-
ture.

Let X, and X, be two oriented Riemannian manifolds with cylindrical
ends of dimension 2k; and 2k,, respectively, and let X = X, x X,. The
manifold X; has a decomposition as X; = N, Uy, (Rt x Y;) where N;
is a compact manifold with boundary Y;. Let E; —» X;, i = 1,2, be
a Clifford bundle over X; and assume that on Rt x Y;, the connection
and the Hermitian metric of E; are products. Let

Di: C%(X;, Bf) » C°(X,, BF)

be the corresponding chiral Dirac operators. Our assumption implies
that on Rt x Y;, D} takes the form

0
T = :
(91) Dz’ =" (aui +Bz)1

where ~; denotes Clifford multiplication by the outward unit normal
vector field, and B;: C=(Y;, E}|y) —» C=(Y;, E}|y;) is a Dirac oper-
ator on Y;. Let E = E;, ® E, be the tensor product of E; and E, over
X = X, x X, that is, the fibres are given by E(, ) = (F1): ® (Ez)y-
Now recall that the Clifford algebras satisfy

CUT, X:) ® CUT,X,) = CUT, X, ® T, X,).

This implies that F is a Clifford bundle over X. Let 7; be the canonical
involution of E;. Then 7 = 1; ® 1, is the corresponding involution of E,
and therefore the +1 eigenspaces ET of 7 are given by

E* = (B ® E7) ® (Er ® Ey),
E-=(FE;  Ef)o® (Ef ® E5).
Let D: C*(X,E) — C*(X,E) be the Dirac operator of E and let

D* be the restriction of D to C*(X, E*). Then with respect to the
decomposition (9.2), we have

D+ = Df ®1d —-1d®D;
T \Id®Df D;y®Id)’

(9.2)

(9.3)
p-_(Dreld IdeD;
“\~-ldeD} Df®Id)’

Lemma 9.4. The following equality holds:
L?-Ind D* = (L*-Ind DY) - (L*?-Ind DY).
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Proof. From (9.3) it follows that

D-D* = D; D} @ Id+1d®D; Dy 0
- 0 DDy @ ld+1d®DID; )’
(9.5)
DD = DfD; ®1d+1d®D; Df 0
- 0 DD ®@ld+1d®Di Dy )

Let AT and AF denote the closures of D¥D* and DFD¥ in L2,
respectively. By Corollary 2.23 and Theorem 4.1 of [16], the kernels of
these operators are all finite-dimensional, and (9.5) implies

ker At = (ker A} @ ker Al) @ (ker A7 ® ker AJ),
ker A™ = (ker A7 @ker AT) @ (ker AT ® ker A).
Hence, we get
L?-Ind D* = dimker A" — dimker A~
= (dimker A} — dimker A[) - (dimker A — dimker AJ)
= (L*Ind D7) - (L*Ind DJ).
g.e.d.
Suppose that ker B; = 0. Then by Corollary 3.14 of [1], the L?~index

of D is given by the index of the APS boundary problem, that is, it
equals (0.3). Using Lemma 9.4, we get

1
L%*Ind D* =/ wp, / Wp, — 577(32) / Wp,
X1 X2 X1

(9.6)

- .21_77(31) /X wp, + in(Bl)n(Bz)-

We shall now compare (9.6) with the result obtained by applying our
index formla (0.10). Firstly, it follows from (9.5) that

tre—ta” (z,7) —tre * (z,1)
= (tre ] (z,7) — tretAT (z,z)) (tr eih7 (z,7) — tre~*2 (2, 7).

By Theorem 5 of [10], this equality implies that the local index densities
are related by wp = wp, A wp,, and therefore we obtain

/ Wp = Wp, / Wp,-
X X1 Xa
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It remains to compute the eta invariants. If we use the terminology of §1,
then the hypersurfaces Z; are given by Z; = Y; x X, and Z, = X; x Y,.
We may use ; to identify Ef|y. with E ly, which we call S;. From
(9.3) it follows that on Rt x Z;, D can be written as

5,
+ =y, )
D = pi (aui+Az)7

where

(9.7)

Bi®ld 1d®D;
At_ ) i,j=1,2, 1’#.7)
ld@ D} —B;®ld

and p; denotes Clifford multiplication by the inward unit mormal vector
field. Let A; be the unique self-adjoint extension of A; in L?. The
eta-invariant n(A;) of A; is defined as in (0.9). To compute 7(.A;),
we introduce the following function defined in terms of the spectrum
Spec(B;) of B;. Let

ign A
98) 6= S T lefe(AWVD, t>0,i=12
2
A€Spec(B;)

where erfc(z) is the complementary error function defined by

2 [ _p
erfe(z) = 7—7?] e " du.

The series (9.8) is absolutely convergent, and as ¢ — oo we have
(9.9) 16:(2)| < Ce™,

for some constants C,c¢ > 0. The small time behaviour of 6;(t) is de-
scribed by
Lemma 9.10. Ast — 0, we have

(1) = —5n(B) + 0(), i=1,2

Proof. Differentiating (9.8) yields

9.11) %(t) - —\/-—;_ﬁ

Since Y; is odd-dimensional, it follows from Theorem 2.4 of [3] that

T‘I'(BiehtB'?).

Tr (Bie™'B) = b:t!/? + O(t*/?)
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as t = 0. Hence, we get
0;(t) = a; + c;t + O(t?)

as t = 0. The constant term of this expansion can be computed in the
same way as in [1, p.53], which gives a¢; = —1/27(B;). q.e.d.
Lemma 9.12. The eta invariants of A, and A, are given by

o) =n(By) [, = pr(Ba(Bn) —2 [ GO d

and

1 69
n(Az) =n(Bz)/X wp, = 37 (B1)n(B,) —2/ 8, (t)—==(

Proof. First, observe that by (9.9) and Lemma 9.10, the infinite in-
tegrals are absolutely convergent. We consider A;. From (9.7) it follows
that

tr(41e74 (9, 2), (3,)) )
(9.13) : .
= tr(Ble_“B12 (y,y)) {tr(e'm;r (z,2)) — tr(e™*22 (z, :1:))} ,

for y € Y} and z € X,. Integration over Y; gives Tr(B,e~tB%) on the
right-hand side. It remains to investigate the integral over X,.

Let QfF be a parametrix for e*2% defined as by (3.3) in [16]. From
(9.1) it follows that tr QF (z,z,t) = tr @5 (z,z,t) for z € [2,00) x Ya.
Together with (3.5) in [16], this implies that

tr(e7*? (z, 7)) — tr(e~*2 (z, z))

. is absolutely integrable on X,, and with respect to ¢ we can differen-
tiate under the integral sign. Using Lemma 7.6 together with these
observations, it is easy to prove that

% Xz{tr(e—mé+ (z,z)) R tr(e_mz_ (z,z)) } dr = \/m'ﬁ (Bze—th) .




ON THE L2-INDEX OF DIRAC OPERATORS ON MANIFOLDS 173

Hence, by (9.13) and (9.11) we get

/Xz{tr(e_m; (z,2)) — tr(e™*2 (x,x))} dx
(9.14)

o0
= L?-Ind D+ — ——\/._—— u_1/2 Tr (Bze—uBg) du

= LZ-Ind D; + 02( )

As observed above, the L?~index of DJ can be computed by the index
formula (0.3). Hence, the right-hand side of (9.14) equals

1
/ wp, — =1(B2) + 62(t),
X 2

and we obtain in consequence of (9.13) and (9.11),

n(A,) =\/L7_r /000 t1/2 /Y1 5 tr (Ale_tAf((y,m), (y,m))) dy dzx dt

(] o )t

1 [ 2
+ \—/—7?/0 t71/2Tx (Bre™tt) 6,(t) dit

=0(B) [_wp, ~ Gu(BnB) -2 [ SO0 de

The computation of n(A;) is similar. q-e.d.
Applying our index formula together with Lemma 9.12 yields

1
L?-Ind D* =/ wp, / Wp, — -77(31)/ Wp, — 17)(32)/ Wp,
X1 X2 2 Xa 2 Xy
1 > g
+ 577(31)77(32) + E(el (t)62(2)) dt.
0

By Lemma 9.10, the last integral equals —;7n(B;)n(B;) and, after re-
placing the integral by this term, our index formula coincides with (9.6),
as it should.

Remark. We observe that by our assumption ker B; = 0, the con-
tinuous spectrum of A* has a positive lower bound. Therefore, if we
‘modify the manifold X and the Clifford bundle E on a compact set, the
boundary contribution in the index formula for the corresponding Dirac
operator will be the same. This follows from a relative index formula
as proved in [11]. '

The boundary contribution in the index formula (9.6) has a natural
decomposition where each term is associated with a particular stratum
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of the boundary at infinity. As the formula suggests, one may regard
n(Bs) [x, wp;, @ # j, as being associated with ¥; x X;, and 3 n(B1)n(B;)
as being attached to the corner Y; x Y;. We do not know if such a
natural decomposition exists in general. If it exists, it must be related
to a natural splitting of the eta invariants n(.AF) and n(AF) occurring
n (0.10).

One possible approach of obtaining such a splitting is to use the de-
composition of the spectrum of A7 into the point spectrum and the
continuous spectrum. Let Z be an odd-dimensional Riemannian man-
ifold with cylindrical ends. Let A : C*(Z,F) — C*(Z, F) be a Dirac
operator on Z, and let A be the unique self-adjoint extension of A in L2.
By Theorem 4.1 of [16], the point spectrum of A consists of real eigen-
values of finite multiplicity and the number of eigenvalues, counted with
multiplicity, in (—p,p), p > 0, is bounded by C(1 + u®*). Therefore,
the series

: sign A
(9.15) Mol s) = 3 =5
A£O

where A runs over the nonzero eigenvalues of A, is absolutely convergent
in the half-plane Re(s) > 2n. We do not know if, for general A, this se-
ries admits a meromorphic continuation to C. Now consider the special
case where, for example, Z = Y; x X, and A = A, as defined by (9.7).
Let A, 4 be the restriction of A; to the subspace of L*(Y; x X3, S; ®E2)
which is spanned by all L? eigensections of A;. Furthermore, let A2 4 be
the restriction of AF to the subspace of L2(X,, EE) which corresponds
to the point spectrum of AE. Then from (9.7) it follows that

tr(Aie™ e ((y,2), (y,2)))
= tr(Ble""Bf (y,y)) {tr(e‘mzd (z,2)) — tr(e*A2q (m,x))},

for y € Y] and = € X,. The right-hand side is absolutely integrable and
we have

/ / tr(Ale“tAid ((y, z), (y, x))) dydz = Tr(Ble_tB%) L*-Ind D;.
71 /X2

This implies that n4(.A;,s) has a meromorphic continuation which is
regular at s = 0, and the value at zero, which we denote by 74(A;), is
given by

1
(916)  na(Ar) = n(B:) P-Ind P* = n(By) [ wp, — gn(Bi)n(Bo).

2
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Set
77c(A75) = 77("4, S) - nd(A,s)a Re(s) > 2n.

This is the contribution of the continuous spectrum to the eta function
of A. Again we do not know if, in general, 7,.(.A, s) has an analytic
continuation to C. For A = A;, however, by the above results, 7.(A;, s)
has an analytic continuation which is regular at s = 0. Let n.(A;) =
n.(A1,0) be the corresponding eta invariant. From Lemma 9.12 and
(9.16) it follows that

Ne(A1) = =2 /000 %i—l(t) 6,(2) dt.

A similar formula holds for A4, and we have

1
nc(Al) + nc(A2) = '2—77(B1)77(B2)
Thus the decomposition of the spectrum of A; leads to the splitting
n(A:) = na(Ai) + nc(A)

of the eta invariants which in turn induces a natural decomposition of
the boundary term in (9.6). It has to be seen if this approach can be
generalized.

Acknowledgment

Part of this work was done during the author’s stay at the Max-
Planck-Institut fiir Mathematik in Bonn. The author wishes to thank
the MPI for financial support and hospitality.

References

{1] M. F. Atiyah, V. K. Patodi & 1. M. Singer, Spectral asymmetry and Rie-
mannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43—
69.

[2] J.-M. Bismut & J. Cheeger, Families indez for manifolds with boundary,
superconnections, and cones. I. Families of manifolds with boundary and
Dirac operators, J. Funct. Anal. 89 (1990) 313-363.

[3] J.-M. Bismut & D. S. Freed, The analysis of elliptic families. II. Dirac
operators, eta invariants, and the holonomy theorem, Comm. Math. Phys.
107 (1986) 103-163.

[4] U. Bunke, The gluing problem for the eta invariant, J. Differential Geom.
41 (1995) 397-448.

[5] J. Cheeger, On the spectral geometry of spaces with cone like singularities,
Proc. Nat. Acad. Sci. U.S.A. 76 (1976) 2103-2106.



176 WERNER. MULLER

(6] , Spectral geometry of singular Riemannian spaces, J. Differential
Geom. 18 (1983) 575-657.

[7] J. Cheeger & M. Gromov, On the characteristic numbers of complete man-
ifolds of bounded curvature and finite volume, Differential Geometry and
Complex Analysis, (Ed. I. Chavel & H. M. Farkas) Springer, Berlin, 1985,
115-154.

[8] X. Dai & D. S. Freed, n—invariants and determinant lines, J. Math. Phys.
35 (1994) 5155-5194.

[9] J. Eichhorn, Flliptic differential operators on noncompact manifolds, Sem-
inar Analysis, Karl-Weierstrafi-Inst. 1986/87, Teubner, Leipzig, 4-169.

[10] P. B. Gilkey, The geometrical indez theorem for Clifford modules, Topics
in Math. Analysis, (Ed.: Th.M. Rassias), World Scientific, 1989, 315-327.

[11] M. Gromov & H. B. Lawson, Positive scalar curvature and the Dirac op-
erator on complete Riemannian manifolds, Inst. Hautes Etudes Sci. Publ.
Math. 58 (1983) 83-196. .

[12] L. Guillopé, Théorie spectrale de quelques variétés a bouts, Ann. Sci. Ecole
Norm. Sup. 22 (1989) 137-160.

[13] R. P. Langlands, On the functional equations satisfied by Eisenstein series,
Lecture Notes in Math. Vol. 544, Springer, Berlin, 1976.

[14] R. R. Mazzeo & R. B. Melrose, Analytic surgery and the eta invariant,
Preprint, 1993.

[15] R. B. Melrose, The Atiyah-Patodi-Singer index theorem, A.K. Peters,
Wellesley, 1993.

[16] W. Miiller, Eta invariants and manifolds with boundary, J. Differential
Geom. 40 (1994) 311-377.

, Spectral theory for Riemannian manifolds with cusps and a related

trace formula, Math. Nachr. 111 (1983) 197-288.

, Spectral theory for noncompact Riemannian manifolds with cusps
and a related trace formula, Inst. Hautes Etudes Sci., Paris, Preprint, No.
46, 1980.

[19] M. Reed & B. Simon, Methods of modern mathematical physics, Vol. IV,
Academic Press, New York, 1978.

[20] G. de Rham, Variétés différentiables, Hermann, Paris, 1960.

[21] S. Steinberg, Meromorphic families of compact operators, Arch. Rational
Mech. Anal. 31 (1968) 372-379.

[22] M. Stern, L?—index theorems on warped products, Princeton University
Ph.D. thesis, 1984.

, L?-index theorems on locally symmetric spaces, Invent. Math. 96
(1989) 231-282.

[24] G. N. Watson, The theory of Bessel functions, Cambridge Univ. Press,
London, 1958.

[25] K. P. Wojciechowski, The additivity of the n-invariant. The case of an
invertible tangential operator, Houston J. Math. 20 (1994) 603-621.

[17]

18]

(23]



ON THE L2-INDEX OF DIRAC OPERATORS ON MANIFOLDS 177

[26] S. Zucker, Ly cohomology of warped products and arithmetic groups, In-
vent. Math. 70 (1982) 169-218.

UNIVERSITAT BONN





